Skip to main content
Fig. 2 | Zoological Letters

Fig. 2

From: Involvement of Slit–Robo signaling in the development of the posterior commissure and concomitant swimming behavior in Xenopus laevis

Fig. 2

slit2- or robo2-MO-injected tadpoles indicates an abnormality in swimming behavior. a–c, g–i Red lines show the swimming trajectory of tadpoles: a, g Un-injected control, b Slit2-control-MO, c Slit2-MO, h Robo2-control-MO, i Robo2-MO. d–f, j–l Quantification of the swimming area (d, j), swimming distance (e, k) and swimming speed (f, l). In the slit2- or robo2 MO-injected larvae, values of all items measured are significantly decreased. d The average swimming areas of control, Slit2-control-MO and Slit2-MO are 126.59 cm2, 108.92 cm2 and 16.40 cm2 respectively. e The average swimming distances of control, Slit2-miss-control and Slit2-MO are 67.44 cm, 64.24 cm and 23.83 cm respectively. f The average swimming speeds of control, Slit2-control-MO, and Slit2-MO are 2.28 cm/s, 2.06 cm/s and 0.82 cm/s, respectively. j The average swimming areas of control, Robo2-control-MO, and Robo2-MO are 126.59 cm2, 110.84 cm2 and 19.42 cm2, respectively. k The average swimming distances of control, Robo2-control-MO, and Robo2-MO are 67.44 cm, 59.24 cm and 21.99 cm, respectively. l The average swimming speeds of control, Robo2-control-MO, and Robo2-MO are 2.28 cm/s, 1.94 cm/s and 0.83 cm/s, respectively. Error bars are shown as standard deviation (SD). Data denoted by the same letter are not significantly different (P > 0.05) by Scheffé test after one-way analysis of variance

Back to article page