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nematode larvae (infective juveniles), harbor the mutual-
istic bacteria in their intestines [10]. These larvae move 
freely in the soil, and seek insect hosts. Upon locating a 
suitable insect, the larvae enter its body and release their 
bacterial symbiont [11]. The bacteria proliferate, and the 
host is killed typically within 24–48 h by toxins produced 
by the bacteria and the nematodes [12]. The larvae feed 
on bacterial cells and develop into amphimictic adults 
in the genus Steinernema or hermaphrodites in Heter-
orhabditis [13]. The first generation is followed by several 
amphimictic generations in both genera. When the insect 
carcass is depleted of nutrients, the nematodes revert 
back to the resting form, and their receptacle is colonized 
by bacterial cells. This usually occurs within 7–14 days 
after infection, depending on the host size, temperature, 
and other factors [14]. Finally, the nematodes re-establish 
symbiosis with the bacteria and abandon the depleted 
insect cadaver in search of a new host [15, 16].

Background
Entomopathogenic nematodes (EPNs) from the gen-
era Steinernema and Heterorhabditis are obligate lethal 
pathogens of insects [1]. They establish mutualistic rela-
tionships with bacteria of the genera Xenorhabdus and 
Photorhabdus, respectively [1–5], and facultative asso-
ciation with several other bacterial species [6–9]. Dur-
ing their life cycle (Fig.  1), the non-feeding third stage 
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Given their effective insect-killing abilities [17], poten-
tial for large-scale industrial production [18], coupled 
with their relative safety towards non-target organisms 
[19, 20], and environmental considerations, [21] these 
nematode-bacterial complexes serve as biological control 
agents and are fundamental pillars of integrated pests 
management programs [22–24].

The relationship between Steinernema and Xenorhab-
dus, and Heterorhabditis and Photorhabdus is obligate in 
natural environments [10]. The nematodes transport the 
bacteria inside soil-borne insects, and through the action 
of bacterial toxins and digestive enzymes, the infested 
insect is killed and converted into biomass that is used 
by the nematodes and the bacteria to proliferate [25–28]. 
The secondary metabolites produced by the bacterial 
symbionts also protect the host cadaver against other 
microorganisms [11, 26, 29, 30] and scavengers [31–33].

The advancement of molecular methods in recent 
decades has enabled a significant transformation of the 
systematics of entomopathogenic nematode-bacterial 
complexes. This review charts the evolution of methods 
used in the taxonomy of entomopathogenic nematodes 
and their bacterial symbionts, with a special empha-
sis on the current state and the latest advances in this 
field. We also aim to synthesize the published records of 
nematode–bacteria associations and assess the degree of 

specificity in Steinernema–Xenorhabdus and Heterorhab-
ditis–Photorhabdus pairs.

Entomopathogenic nematodes
Species diversity and species delimitation
The systematics of entomopathogenic nematodes has 
undergone a revolution with the onset of molecular 
methods that provide a strong discriminatory tool for 
morphologically conservative organisms. Consequently, 
the number of recognized species has significantly 
increased over 20 years, growing from 22 EPN species in 
1995 to 108 in 2015. However, the expansion of molecu-
lar methods has also brought certain challenges, includ-
ing for instance issues related to describing novel species 
using too short or poorly curated sequences, or using 
erroneous sequence alignments. Through a comprehen-
sive analysis of available molecular data, the systemat-
ics of these nematode groups were revised by Hunt and 
Subbotin [34], which resulted in the synonymization of 
more than 10 species, which lacked adequate molecular 
support, to some previously described species [34]. As of 
the end of 2023, there are 113 species of Steinernema and 
21 species of Heterorhabditis [35], and several new EPN 
species descriptions are expected to be published in the 
near future.

Approaches for the delimitation of EPN species 
have long been a matter of discussion. Adams [36], for 

Fig. 1 Generalized life cycle of entomopathogenic nematodes
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instance, argued that the traditionally used approach 
based on overall molecular/morphological similarities 
or reproductive compatibility neglects historical rela-
tionships and likely fails to accurately reflect the number 
of actually existing species. He proposed to delimitate 
species based on unique character states to show evi-
dence for lineage independence. Spiridonov et al. [37] 
argued that with the increasing number of known spe-
cies, autapomorphies for some well-established species 
may disappear, and suggested that sequence divergence 
is a better indication of lineage independence. Adams et 
al. [38] however disagreed with this view and suggested 
that sequence divergence cannot reveal lineage indepen-
dence and considered its use to delimit species to be arbi-
trary, and thus a poor indicator of species boundaries. At 
present, EPN species are delimited using an amalgama-
tion of evolutionary and phylogenetic species concepts 
[36] while sequence divergence is currently the primary 
method for identifying EPN species.

The dominant molecular marker used in EPN system-
atics is the sequence of the internal transcribed spacer 
regions of the rDNA tandem repeat unit (ITS1–5.8  S–
ITS2). In the case of Steinernema species, this gene 
marker is suitable to resolve the relationships among 
closely related species, and it is the most widely used 
marker for the diagnosis and identification of new EPN 
species [39]. Nguyen [40] noted that a 5% sequence 
divergence could effectively distinguish between Steiner-
nema species present at the time. However, subsequently 
described closely related species exhibit variances of no 
more than 3% in the sequences of the ITS region [41]. In 
certain Steinernema species, the use of ITS sequence can 
be complicated by intra-individual variability in the ITS 
sequences of some Steinernema species [39]. Gene mark-
ers, such as the D2D3 expansion segment of the LSU 
rDNA sequence, are compulsory in description of EPN 
species due to their use in metabarcoding studies, but the 
segment is too conserved to distinguish between closely 
related species. Some recent studies describing novel 
steinernematid species are also reporting the sequences 
of the mitochondrial 12 S rRNA and of the cytochrome 
oxidase subunit I (COI) (e.g. [42]), anticipating that ITS 
and D2D3 sequences might later provide insufficient 
information as the number of novel species is rapidly 
increasing.

In the genus Heterorhabditis, that is evolutionarily 
younger compared to Steinernema [38], there is a lower 
variability in the standardly used markers (especially the 
D2D3, but also the ITS regions of the rDNA). Recently, 
Dhakal et al. [43] analyzed COI, unc-87 encoding thin 
filament (F-actin)-associated protein and cmd-1 gene 
encoding calmodulin of a large number of Heterorhab-
ditis species and isolates. As a result, the analyses con-
firmed the synonymization of several species suggested 

by Hunt and Subbotin [34], and revealed the possibility 
that some isolates might have been misidentified and 
actually represent different, undescribed species. Indeed, 
three new species, namely H. ruandica and H. zacate-
cana [44] and H. casmirica [45] were recently described 
using a multilocus approach, as the D2D3 sequences 
were identical in some cases, and the ITS sequences 
nearly identical to the sequences of the closely related 
species H. bacteriophora. This highlights the necessity of 
transitioning to multilocus molecular characterization, 
or even to the use of core genome sequences for future 
EPN systematics and species descriptions.

Phylogeny
Although steinernematid and heterorhabditid nema-
todes exhibit many similarities in their life histories, they 
are representatives of two different evolutionary lin-
eages within the Rhabditida order. According to Poinar 
2011, both families are of Permian origin (230–252 mil. 
years). Based on morphological similarities and molecu-
lar data, the family Heterorhabditidae was considered as 
a member of the superfamily Strongyloidea, and the fam-
ily Steinernematidae of the superfamily Strongyloididea 
[46]. Based on recent single and multi-locus analyses, 
the family Heterorhabditidae indeed forms a basal group 
of Strongyloidea [47–49] whereas recent phylogenomic 
analysis have shown the family Steinernematidae as the 
earliest branching clade of the group Tylenchina [49].

Nguyen et al. [50] were the first to propose dividing the 
genus Heterorhabditis into three clades (groups): ‘Indica’, 
‘Bacteriophora’ and ‘Megidis’ and this division was con-
firmed by other authors [43, 51]. The “Indica” clade, 
named after pantropical species H. indica, contains seven 
species that predominantly occur in tropics and subtrop-
ics. This clade is an outgroup to the ‘Bacteriophora’ and 
‘Megidis’ clades. The “Bacteriophora” clade contains the 
most widespread species, H. bacteriophora, and five other 
species with a very narrow geographic range. The ‘Megi-
dis’ clade includes six species, among them H. megidis, 
with a Holarctic distribution and H. zealandica, which 
occurs in several continents from both hemispheres. 
While some relationships within the clades are well-sup-
ported, others are not resolved with currently available 
molecular markers. Generally, well-supported relation-
ships between the clades are only provided by using ITS 
rRNA gene sequences [43].

The first comprehensive phylogenetic analysis of the 
family Steinernematidae based on the sequence of D2-D3 
expansion segments of the 28S rDNA gene revealed five 
main clades within the family Steinernematidae [52]. The 
following analysis based on the ITS rDNA sequence made 
by Spiridonov et al. [37] divided the family into 5 main 
clades (clade I: affine-intermedium; clade II: carpocapsae-
scapterisci-tami; clade III: feltiae-kraussei-oregonense, 
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clade IV bicornutum-ceratophorum-riobrave and clade 
V: arenarium-glaseri-karii-longicaudum. The latest com-
prehensive analysis [51] divided the group into twelve 
multiple species/clades: “Affine”, “Bicornutum”, “Cam-
eroonense”, “Carpocapsae”, “Costaricense”, “Feltiae”, 
“Glaseri”, “Karii”, “ Khoisanae”, “Kushidai”, “Longicau-
dum” and, “Monticola”; and three monospecies clades: 
S. neocurtillae, S. unicornum, and S. rarum. In a similar 
manner as for the Heterorhabditidae family, currently 
available molecular markers are insufficient to clarify the 
relationships within some of the larger clades. To clarify 
currently unresolved relationships, future phylogenetic 
studies could prioritize finding additional genetic mark-
ers. Alternatively, they could focus on conducting phy-
logenomic analyses.

Bacterial symbionts
The origins of the bacterial genera Photorhabdus and 
Xenorhabdus
The first taxonomic study of symbiotic bacteria associ-
ated with entomopathogenic nematodes was carried 
out to characterize a bacterial species isolated from the 
intestinal lumen of Neoaplectana carpocapsae Weiser 
(Steinernematidae: Nematoda; Syn: Steinernema carpo-
capsae) [53–56] (Fig. 2). This bacterial species was named 
Achromobacter nematophilus Poinar and Thomas 1965 
[54] based on morphological characters and biochemi-
cal traits. Several subsequent studies were conducted to 
describe the biology of this bacterial species, including its 
entomopathogenic abilities [54, 57–61]. A few years later, 
the genus Achromobacter lost its status and several of its 
species were transferred to the genus Alcaligenes Cas-
tellani and Chalmers 1919 [62, 63], leaving the species 
Achromobacter nematophilus in a taxonomic limbo.

The bacteria associated to entomopathogenic nema-
todes continued to raise scientific interests and addi-
tional strains were isolated and characterized [58–61]. 
During the characterization of several bacterial strains 
isolated from Heterorhabditis bacteriophora and Neo-
plectana (= Steinernema) nematodes, Gerard M. Thomas 
and George O. Poinar Jr. noticed that the strains iso-
lated from H. bacteriophora nematodes shared several 
characteristics with strains isolated from Neoplectana 
nematodes, including the type strain of the species A. 
nematophilus, but differed in bioluminescence produc-
tion and catalase activity [64]. Consequently, they pro-
posed: (i) the creation of the genus Xenorhabdus Thomas 
and Poinar 1979 to accommodate large, gram-negative, 
rod-shaped, facultatively anaerobic, entomopathogenic 
bacteria which are intimately associated with entomo-
pathogenic nematodes; (ii) to transfer A. nematophilus 
to this new genus, hence the creation of X. nematophilus, 
and (iii) the creation of a novel species, X. luminescens to 
accommodate the bioluminescent strains isolated from 

Heterorhabditis nematodes [64]. Noteworthy to mention 
that the correct spelling of the species X. nematophilus is 
X. nematophila, to conform to the grammar rules of the 
Latin language. Correct spelling was introduced in the 
literature from 2000 [65, 66]. To avoid confusion, we will 
use the scientific names as they were originally proposed. 
The collection of Xenorhabdus strains rapidly increased, 
allowing deeper characterization of the bacterial genus, 
which served as grounds for establishing the multispecies 
nature of the genus and to describe novel taxa [67–77]. 
Taxonomists rapidly realized that relying merely on mor-
phological and biochemical characters was not sufficient 
to confidently discriminate the different taxa, hence, 
several by-then state-of-the-art techniques started to be 
included in studies, such as DNA-DNA hybridization, 
16 S sequences, and fatty acid methyl ester (FAME) pro-
filing [71, 77–82].

The results of these studies often provided evidence 
for the phenotypic and genetic divergence between spe-
cies, but also showed that all the available strains can 
be grouped into two distinct groups: one composed of 
strains that produce bioluminescence and are associated 
with Heterorhabditis nematodes, and a second group 
composed of strains that are aluminescent and are asso-
ciated with Neoaplectana (Syn: Steinernema) nematodes 
[83]. Consequently, Noël Boemare, Raymond Akhurst, 
and Roslyn Mourant carried out a large study including 
several strains, and based on DNA-DNA hybridization 
studies proposed the creation of a novel bacterial genus, 
Photorhabdus, transferring thereby those bioluminescent 
strains associated with Heterorhabditis nematodes [2]. 
Several further studies provided evidence, often genetic 
evidence, of the distinctiveness of these two genera 
[84–91].

History of the taxonomy of the genus Xenorhabdus
The first described species of the genus Xenorhabdus was 
X. nematophilus, which resulted from the proposal to 
transfer A. nematophilus to this newly created genus [64]
(Fig.  2). Shortly after its creation, the species X. nema-
tophilus was divided into three subspecies: X. nema-
tophilus subsp. nematophilus, X. nematophilus subsp. 
bovienii, and X. nematophilus subsp. poinarii [83]. Sub-
sequently, the creation of X. nematophilus subsp. bed-
dingii was proposed [73]. Using a numerical approach 
based on biochemical characteristics, all X. nematophi-
lus subspecies were proposed to be elevated to the spe-
cies status, which led to the creation of the following 
species: X. beddingii, X. bovienii, X. nematophilus, and 
X. poinarii [75]. A few years later, the use of 16 S rRNA 
gene sequences for taxonomic purposes became standard 
and boosted the discovery of novel species of the genus, 
increasing the number of Xenorhabdus species to twenty 
[77, 92–94]. Since 2006, the description of novel species 
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Fig. 2 Major events in the taxonomic history of the symbiotic bacteria associated to Steinernema and Heterorhabditis nematodes, currently classified 
within the genera Xenorhabdus and Photorhabdus, respectively
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was somewhat slow, but the multi-locus sequence analy-
sis (MLSA) approach was implemented, increasing the 
robustness of the taxonomic conclusions derived from 
such studies [95–99]. Since 2021, the use of core genome 
sequences became the norm to describe novel species 
[100–103]. Using this approach, the proposal for dividing 
a Xenorhabdus species, X. bovienii, into two subspecies, 
X. bovienii subsp. bovienii and X. bovienii subsp. afri-
cana, was made for the first time [102](Fig. 2).

History of the taxonomy of the genus Photorhabdus
The bacterial genus Photorhabdus was established by 
Boemare et al. [2] to harmonize the taxonomy of bacteria 
symbiotically associated with entomopathogenic nema-
todes (Fig. 2). Initially, this genus contained a single spe-
cies, P. luminescens [2]. Several further taxonomic studies 
were carried out, which provided evidence to suggest 
that P. luminescens was actually a heterogeneous genomic 
group, likely composed of several distinct species [84, 
86–89, 104]. Decisive evidence for this notion was first 
provided by Fischer-Le Saux et al. [90], who measured 
DNA relatedness levels across several Photorhabdus 
strains. Consequently, they proposed to create two new 
species, P. asymbiotica and P. temperata, and to divide 
P. luminescens into different subspecies: P. luminescens 
subsp. akhurstii, P. luminescens subsp. laumondii, and 
P. luminescens subsp. luminescens [90]. Importantly, the 
arguments to support the novel species and subspecies 
relied on an 80% DNA relatedness threshold proposed 
by Vandamme et al. [105] instead of the 70% threshold 
proposed by the ad hoc Committee on Reconciliation 
of Approaches to Bacterial Systematics [105, 106]. The 
following studies describing novel Photorhabdus taxa 
assigned them the status of subspecies, despite the fact 
that DNA relatedness scores supported their status as 
species, perhaps to preserve the more conservative sub-
species system proposed by Fischer-Le Saux et al. [90]: 
[90, 95, 107–112]. Hence the bacterial species concept in 
the Photorhabdus genus was initially outlined as a collec-
tion of strains that share at least one diagnostic pheno-
typic trait and whose purified DNA molecules show at 
least 80% cross-hybridization. With the rapid advances 
in DNA sequencing technology, additional quantitative 
phylogenetic methods were developed to replace the 
wet-lab DNA-DNA hybridization method, as multi-locus 
sequence analysis (MLSA) [99, 112, 113]. Despite the 
clear phylogenetic power of the MLSA approach, the tax-
onomy of the genus Photorhabdus was not totally clear, 
as major taxonomic uncertainties were evident due to the 
use of a 97% nucleotide sequence identity (NSI) cutoff to 
delimit subspecies boundaries instead of species bound-
aries, as it was commonly used in many other bacterial 
groups [95, 111, 114–116]. As a consequence, very closely 
related species such as P. temperata subsp. khanii and 

P. temperata subsp. stackebrandtii, which share 98.4% 
nucleotide sequence similarity of concatenated house-
keeping genes between them, were declared heterotypic 
synonyms [95, 109, 113]. In addition, the application of 
the 97% threshold resulted also in the misclassification 
of other isolates. Strains KR04 and C8406, for instance, 
were initially classified as P. luminescens subsp. kayaii in 
spite of their phylogenetic separation from strains FR33 
and CIP 108,428T, both of them classified as P. lumine-
scens subsp. kayaii using MLSA [95, 111]. Similar taxo-
nomic misplacements were observed in other taxa such 
as P. luminescens subsp. laumondii, P. luminescens subsp. 
kayaii and P. luminescens subsp. kleinii [110].

To harmonize the taxonomy of the genus Photorhab-
dus, Machado et al. [117] implemented whole-genome-
based approaches that were becoming the gold standard 
for bacterial taxonomy at that time [117–123]. Using 
sequence comparison approaches such as orthologous 
average nucleotide identity (OrthoANI) and in silico 
DNA-DNA hybridization (isDDH) and by reconstruct-
ing phylogenetic relationships based on core genomes, 
Machado et al. [117] proposed the elevation of most of 
the subspecies of the genus Photorhabdus to the species 
level [117]. Since then, the use of whole genome-based 
approaches has become the norm, and several novel 
species and subspecies have been proposed using this 
approach [44, 117, 124–127](Fig. 2).

Current taxonomic status and current standards to 
describe Xenorhabdus and Photorhabdus species
As described above, the description of bacterial species 
of the genera Xenorhabdus and Photorhabdus was ini-
tially based on morphological and biochemical differ-
ences, followed by DNA-DNA hybridization assays, and 
then by genetic differences of few genetic markers, such 
as the 16  S rRNA gene, the recombinase A (recA), the 
DNA polymerase III beta subunit (dnaN), the glutamyl-
tRNA synthetase (gltX), the gyrase beta subunit (gyrB), 
and the translation initiation factor IF-2 (infB) [2, 90, 
95](Fig.  2). In 2018 and 2021, the use of whole-genome 
sequences for taxonomic purposes was introduced for 
the genera Photorhabdus and Xenorhabdus, respectively, 
to align with the gold standards for bacterial taxonomy 
at that time [117, 126]. Now, novel bacterial species are 
described based on a well-supported phylogenomic sepa-
ration as phylogenomic trees often capture intra- and 
interspecific variability, and based on overall genomic 
relatedness indices (OGRIs) such as average nucleo-
tide identity (ANI) and digital DNA-DNA hybridization 
(dDDH). Phylogenomic reconstructions are carried out 
based on core-genome sequences using tools such as 
Roary and FastTree [128, 129], and overall genomic relat-
edness indices (OGRIs) are calculated using tools such as 
the orthologous average nucleotide identity (OrthoANI) 
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and the Genome-to-Genome Distance Calculator in the 
case of ANI and dDDH, respectively. There are plenty of 
user-friendly, free, online platforms that carry out these 
analyses in a fully automated manner, such as The Type 
(Strain) Genome Server (TYGS) [130, 131]. There are sev-
eral additional resources for this purpose [132]. A great 
consensus on the use of OGRIs and on the thresholds 
that delimit prokaryotic species and subspecies boundar-
ies has now been reached [118, 121, 133, 134]. However, 
the proposed thresholds values are not fixed values and 
should be analyzed in a genus-specific manner. In the 
case of Photorhabdus and Xenorhabdus, in general terms, 
two strains belong to different species/subspecies if the 
dDDH value between them is lower than 70% and/or 
the ANI value between them is lower than 95–96%. Two 
strains belong to the same species but different subspe-
cies if the dDDH value is between 70 and 79% and/or the 
ANI value is between 96 and 98%, and two strains belong 
to the same species and the same subspecies if their 
dDDH value is greater than 79% and/or the ANI value 
is greater than 98%. Based on these values and phyloge-
nomic separations, the bacterial genus Xenorhabdus is 
divided into 32 taxa (31 species, one of which is divided 
into two subspecies) and the bacterial genus Photorhab-
dus in 30 taxa (23 species, six of which are divided into 
different subspecies) (Tables 1 and 2; Figs. 3 and 4).

Coevolution
Mutualistic microbial symbionts are often hypothesized 
to have undergone coevolution with their hosts, which 
can eventually lead to parallel speciation or co-specia-
tion in both partners [170]. Steinernema species have a 
specific one-to-one relationship with Xenorhabdus spp. 
That is, one species of Steinernema may only be associ-
ated with one species of Xenorhabdus (Table  1; Fig.  3). 
However, certain promiscuous Xenorhabdus species can 
be hosted by several Steinernema species [171]. A single 
exception could be S. sangi, which has been reported to 
be associated both with X. vietnamensis [95] and X. thu-
ongxuanensis [99]. It remains to be determined if this 
can also be explained by a misidentification because in 
none of the two studies, the nematode identification pro-
cedure is described in detail, however in both cases the 
authors claim that both X. vietnamensis [95] and X. thu-
ongxuanensis (Phan, pers. comm.) were isolated from the 
type strain of S. sangi. The association of S. sangi with X. 
vietnamensis was further documented by molecular data 
for both the nematode and bacterium by Lalramnghaki 
et al. [172]. Heterorhabditis species associate with more 
Photorhabdus species [95] even within single populations 
[173] (Table 2; Fig. 4).

Several cophylogenetic studies on entomopatho-
genic nematodes and their bacterial symbionts have 
been performed in the past decades. Regarding the 

Heterorhabditis–Photorhabdus complex, Maneesa-
korn et al. [174], for instance, showed that phylogenies 
of nematodes and bacteria are consistent with a global 
co-speciation pattern, even though there are some mis-
matches between the two phylogenies in the case of H. 
bacteriophora and H. georgiana and their respective 
Photorhabdus symbionts. Given that the current num-
ber of species has increased dramatically since then, we 
synthesized the published data on Photorhabdus–Heter-
orhabditis associations up to the date (Table 2; Fig. 4). We 
observe that, although the different Photorhabdus spe-
cies and subspecies are hosted by several Heterorhabdi-
tis species, there is a high degree of host specificity. Only 
four Photorhabdus taxa (P. cinerea, P. laumondii subsp. 
laumondii, P. luminescens subsp. luminescens, and P. 
luminescens subsp. mexicana) have been documented to 
be hosted by nematodes belonging to two different Het-
erorhabditis clades (“bacteriophora” and “indica”). The 
majority of heterorhabditid species have been observed 
to host only one and in few instances two Photorhabdus 
species/subspecies. However, H. indica and H. bacte-
riophora exhibit a higher degree of “promiscuity”, as they 
associate with numerous Photorhabdus species/subspe-
cies from various Photorhabdus clades. This increased 
promiscuity may result from the broader distribution of 
these species, making them more commonly isolated and 
studied, and thus providing more data on their associa-
tions with Photorhabdus. Alternatively, as demonstrated 
in H. downesi, associating with different symbionts allows 
nematodes to expand their ecological niche [173]. The 
heightened promiscuity of species with the broadest 
distribution among heterorhabditid nematodes could 
therefore be an adaptation to colonize various habitats 
worldwide. Excluding these two “promiscuous” species, 
the species from the “indica” clade are generally associ-
ated with the most derived Photorhabdus clades (the “P. 
aballayi” and the “P. noenieputensis” clades); the nema-
todes from the “megidis” clade are found in association 
with more ancestral Photorhabdus species, such as P. 
cinerea and P. tasmaniensis, but in a few cases with tran-
sitional species such as P. laumondii subsp. laumondii; 
and species from the “bacteriophora” clade are associated 
with bacteria from a single Photorhabdus clade, the tran-
sitional clade “P. laumondii” (Fig. 4).

In the Steinernema and Xenorhabdus complex, the 
first study addressing co-speciation and the only study 
focused on the whole Steinernematidae family and all 
Xenorhabdus species found no evidence for co-specia-
tion [163]. Instead, it revealed 12 co-speciation events 
and at least 17 host switches among the 30 Steiner-
nema–Xenorhabdus pairs sampled [163]. Later studies 
documented switches of symbionts between nematodes 
of distantly related clades [149, 150] suggesting that 
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Nematode Clade Bacterium Nematode Clade Bacterium
S. affine affine X. bovienii* [75] S. apuliae glaseri X. kozodoii [94]
S. arasbaranense - S. arenarium X. kozodoii [94]
S. beddingi - S. australe X. magdalenensis [96]
S. intermedium Xenorhabdus sp. close to X. bovienii [89, 102] S. boemarei X. kozodoii [135]
S. poinari X. bovienii* [136] S. brazilense -
S. sichuanense X. bovienii* [94] S. caudatum -
S. thesami X. bovienii* [137] S. cubanum X. poinarii [138]
S. abbasi bicornutum X. indica [93] S. diaprepesi X. doucetiae [94]
S. bicornutum X. budapestensis [92] S. glaseri X. poinarii [138]
S. biddulphi Xenorhabdus sp. close to X. indica [139] S. khuongi -
S. bifurcatum Xenorhabdus sp. close to X. indica [140] S. phyllophagae -
S. ceratophorum X. budapestensis [94] S. puertoricense X. romanii [94]
S. goweni - S. riojaense X. kozodoii [141]
S. kandii X. indica [142] S. vulcanicum X. kozodoii [143]
S. mitclani - S. aciari karii X. ishibashii [98]
S. pakistanense X. indica [144] S. ethiopiense -
S. papillatum - S. indicum X. griffiniae [145]
S. ralatorei - S. karii X. hominickii [94]
S. riobrave X. cabanillasii [94] S. leizhouense -
S. shori Xenorhabdus sp. close to X. indica [146] S. litchii X. griffiniae [147]
S. yirgalemense X. indica [148] S. loci -
S. beitlechemi cameroonense X. khoisanae [149] S. pwaniensis Xenorhabdus sp. close 

to X. griffiniae and X. 
ehlersii [150]

S. bertusi - S. thanhi -
S. cameroonense Xenorhabdus sp. close to X. miraniense [151] S. bakwenae khoisanae X. bakwenae [103]
S. fabii X. khoisanae [152] S. innovationi -
S. nyetense - S. jeffreyense X. khoisanae [153]
S. sacchari X. khoisanae [153] S. khoisanae X. khoisanae [97]
S. asiaticum carpocapsae - S. tophus -
S. backanense - S. akhursti kushidai X. yunnanensis [101]
S. balochiense - S. anantnagense X. anantnagensis [101]
S. carpocapsae X. nematophila [83] S. kushidai X. japonica [77]
S. colombiense - S. populi -
S. cumgarense - S. guangdongense longicaudum -
S. eapokense X. eapokensis [99] S. hermaphroditum X. griffiniae [94]
S. huense Xenorhabdus sp. close to X. stockiae [154] S. lamjungense -
S. minutum X. stockiae [155] S. longicaudum X. ehlersii [92]
S. nepalense - S. pui -
S. ritteri - S. taiwanensis -
S. sasonense - S. ashiuense monticola X. hominicki [156]
S. scapterisci X. innexi [92] S. borjomiense -
S. siamkayai X. stockiae [94] S. changbaiense -
S. surkhetense Xenorhabdus sp. close to X. stockiae [157] S. monticolum X. hominickii [94]
S. tami - S. robustispiculum -
S. costaricense costaricense close to X. koppenhoeferi and X. khoisanae [158] S. schliemanni close to X. hominickii 

[159]
S. scarabaei X. koppenhoeferi [94] S. neocurtillae - -

Table 1 List of valid Steinernema species and Xenorhabdus species and subspecies and information on their associations
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switches may be frequent in the Steinernema and 
Xenorhabdus complex.

Generally, co-evolution is more easily documented in 
phylogenetic investigations of closely related species and 
intraspecific lineages [175–178]. In EPNs, Murfin et al. 
[179] sequenced genomes of nine X. bovienii strains and 
identified cocladogenesis between Steinernema feltiae 
nematode hosts and their corresponding X. bovienii sym-
biont strains, indicating potential specificity within the 
association. Recently, co-phylogenetic analysis revealed 
a remarkable congruence between phylogenies of the 
nematodes from “bicornutum” and ”carpocapsae” groups 
[144] and “feltiae” group [101] and their Xenorhabdus 
spp. symbionts.

The summary of the current data on Steinernema – 
Xenorhabdus associations (Table  1; Fig.  3) shows that 
some steinernematid clades are associated with a single 
Xenorhabdus species (for instance, nematodes of the 
“affine” clade with X. bovienii; nematodes of the “monti-
cola” clade with X. hominickii) or with different, closely 
related Xenorhabdus species (“kushidai”, “bicornutum” 
and “cameroonense” clades), suggesting a potential co-
evolutionary history. Nematode species from some 
clades, on the other hand, associate with more diverse, 
unrelated Xenorhabdus species (e.g., “carpocapsae” 
and “feltiae” clades). Similarly, bacteria from certain 
Xenorhabdus clades exclusively associate with nematodes 
from specific clades, such as the most basal Xenorhab-
dus clade and nematodes from the “bicornutum” and 

“carpocapsae” clades, while bacteria from other clades 
form association with more diverse and unrelated nem-
atodes. Only four Xenorhabdus species establish asso-
ciation with nematode species belonging to different 
steinernematid clades (X. bovienii subsp. bovienii, X. 
hominickii, X. khoisanae, and X. griffiniae). Our interpre-
tation of the available evidence is that some steinernema-
tid lineages may have undergone co-speciation with their 
bacterial symbionts. This fact suggests that the specificity 
of the Steinernema spp. / Xenorhabdus spp. pairs might 
differ in different lineages. However the analyses of the 
coevolutionary history of Steinernema and Xenorhabdus 
is complicated by the fact that the identity of the bacterial 
symbiont is unknown in more than one-third of species, 
as well as due to a poor understanding of the relation-
ships among Steinernema superclades.

Conclusions
At present there are 113 species of Steinernema and 21 
species of Heterorhabditis, and their delimitation is based 
mainly on sequence divergence. As the traditionally used 
genetic markers, the ITS and LSU regions of the rDNA 
lack the variability to distinguish closely related species, 
transitioning to multilocus molecular characterization 
will be necessary for future EPN systematics and spe-
cies descriptions. In the phylogenetic reconstructions of 
EPNs, the ITS region of the rDNA proved to be the most 
powerful tool, enabling a division of both families into 
well-supported main clades. However, the relationships 

Nematode Clade Bacterium Nematode Clade Bacterium
S. africanum feltiae X. bovienii subsp. africana [160] S. rarum - X. szentirmaii [92]
S. citrae X. bovienii* [152] S. unicornum - X. lircayensis [100]
S. feltiae X. bovienii* [75] Steinernema sp. X. beddingii [94]
S. hebeiense - Steinernema sp. X. mauleonii [94]
S. cholashanense Xenorhabdus sp. close to X. bovienii** Steinernematidae X. miraniensis [94]
S. ichnusae X. bovienii* [161]
S. jollieti Xenorhabdus sp. close to X. bovienii* [102, 162]
S. kraussei X. bovienii* [89]
S. litorale X. aichiensis [101]
S. nguyeni X. bovienii* [153]
S. oregonense Xenorhabdus sp. close to X. bovienii* [102, 163]
S. puntauvense X. bovienii subsp. bovienii [102, 163]
S. sandneri -
S. sangi X. thuongxuanensis [99] and X. vietnamensis [95]
S. silvaticum X. bovienii* [164]
S. texanum -
S. tielingense X. bovienii* [165]
S. weiseri X. bovienii subsp. bovienii [94, 102]
S. xinbinense X. aichiensis**
S. xueshanense Xenorhabdus sp. close to X. bovienii**
* With the current data, it is not possible to determine the exact taxonomic identity as X. bovienii subsp. bovienii and X. bovienii subsp. africana are genetically very 
similar. Whole genome sequences are required in these cases

** this study

Table 1 (continued) 
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within clades, and in the case of steinernematids, also 
among clades, are not well resolved, and there is a need 
for additional genetic markers.

Both genera of symbiotic bacteria contain a similar 
number of species and subspecies with 32 Xenorhabdus 
and 30 Photorhabdus taxa. However, there are probably 
a higher number of undescribed Xenorhabdus species, as 
symbiont identity is unknown in more than one-third of 
steinernematid nematodes. In the last few years, the use 
of core genome sequences became the norm to describe 
novel species of Xenorhabdus and Photorhabdus. The 
same dataset is used for well-supported phylogenetic 
reconstructions.

The overview of Heterorhabditis – Photorhabdus asso-
ciations and phylogenies confirms a high degree of host 
specificity, as heterorhabditids from particular clades 
tend to form association with the bacteria from spe-
cific Photorhabdus clades. However, numerous switches 
occurred during their co-evolutionary history. The high 
promiscuity of H. indica and H. bacteriophora could be 
an artefact of these widespread species being often iso-
lated and studied. We hypothesize that, alternatively, the 

heightened promiscuity could be an adaptation to colo-
nize various habitats worldwide.

In Steinernema –Xenorhabdus complex, some lineages 
may have undergone co-speciation, and it seems that the 
specificity of the Steinernema spp. / Xenorhabdus spp. 
pairs may differ in different lineages. However for a better 
understanding, more data on Steinernema–Xenorhabdus 
diversity and better tools for phylogenetic reconstruction 
of steinernematid nematodes are necessary.

Table 2 List of valid Heterorhabditis species and Photorhabbdus species and subspecies and the information on their associations
Nematode Clade Bacterium
H. bacteriophora bacteriophora P. caribbeanensis, P. cinerea, P. thracensis, P. kleinii, P. khanii subsp. khanii, P. laumondii subsp. laumon-

dii, P. stackebrandtii, P. laumondii subsp. clarkei, P. kayaii, P. luminescens subsp. mexicana [90, 117]
H. beicherriana P. bodei [117]
H. casmirica P. laumondii subsp. clarkei [45]
H. georgiana P. stackebrandtii, P. kleinii [117]
H. ruandica P. laumondii subsp. laumondii [44]
H. zacatecana P. kleinii [44]
H. amazonensis indica P. aballayi, P. luminescens subsp. venezuelensis [127]
H. baujardi P. namnaonensis [117]
H. floridensis P. luminescens subsp. luminescens [166]
H. indica P. akhurstii subsp. akhurstii, P. akhurstii subsp. bharatensis, P. asymbiotica, P. australis subsp. thailand-

ensis, P. noenieputensis, P. aegyptia [90, 117]
H. mexicana P. luminescens subsp. mexicana [124]
H. noenieputensis P. noenieputensis [117]
H. taysearae “P. sonorensis"* [167]
H. atacamensis P. antumapuensis, P. khanii subsp. guanajuatensis [124, 126]
H. downesi megidis P. cinerea, P. temperata [117]
H. marelatus P. tasmanensis [117]
H. megidis P. cinerea, P. temperata [117]
H. safricana P. laumondii subsp. laumondii [168]
H. zealandica P. tasmaniensis, P. heterorhabditis subsp. heterorhabditis, P. temperata [117]
H. egyptii Undescribed
H. hambletoni Undescribed
Heterorhabditis sp. P. hainanensis [125]
Heterorhabditis sp. P. hindustanensis [169]
Heterorhabditis sp. P. heterorhabditis subsp. aluminescens [125]
Undescribed P. australis subsp. australis [125]
*This species was initially described as “P. luminescens subsp. sonorensis”, but its name was not validated. All the taxonomic changes proposed after its description, and 
our own analyses, show that it should be reclassified as “P. sonorensis”, but its name should be validated first by the original isolators
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Fig. 3 Phylogenetic trees of Xenorhabdus bacteria and main steinernematid clades and their associations. Phylogenetic relationships among Xenorhab-
dus were reconstructed based on core genome sequences of Xenorhabdus type strains. 1,466,520 nucleotide positions (1439 core genes) were used in the 
analyses. Bar represents 0.05 nucleotide substitutions per sequence position. NCBI accession numbers of the genome sequences used for the reconstruc-
tion are shown in Table S1. Phylogenetic relationships within Steinernema clades are based on Spirodonov and Subbotin [51]. The associations between 
nematodes and bacteria are depicted by lines, and different line colors distinguish the associations of nematodes from distinct clades
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