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The burrower bug Macroscytus japonensis 
(Hemiptera: Cydnidae) acquires obligate 
symbiotic bacteria from the environment
Takuma Nakawaki1†, Shuto Watanabe1† and Takahiro Hosokawa2*   

Abstract 

Many plant-feeding stinkbugs belonging to the infraorder Pentatomomorpha possess a specialized symbiotic organ 
at the posterior end of the midgut, in which mutualistic bacterial symbionts are harbored extracellularly. In species 
of the superfamily Pentatomoidea, these symbionts typically are verticallytransmitted from host mothers to off-
spring, whereas in species of the superfamilies Coreoidea and Lygaeoidea they are acquired from the environment. 
In the pentatomoid family Cydnidae, vertical symbiont transmission has been reported in several species. Here, we 
report the first case of environmental symbiont acquisition in Cydnidae, observed in the burrower bug Macroscytus 
japonensis. A comprehensive survey of 72 insect samples from 23 sites across the Japanese archipelago revealed 
that (1) symbionts exhibit remarkably high diversity, forming six distinct phylogenetic groups within the Enterobac-
teriaceae of the γ-Proteobacteria, (2) most symbionts are cultivable and closely related to free-living Pantoea-allied 
bacteria, and (3) symbiont phylogenetic groups do not reflect the host phylogeny. Microbial inspection of eggs 
revealed the absence of bacteria on the egg surface. These results strongly suggest that symbionts are acquired 
from the environment, not vertical transmission. Rearing experiments confirmed environmental symbiont acquisi-
tion. When environmental symbiont sources were experimentally withheld, nymphs became aposymbiotic and died 
before molting to the second instar, indicating that nymphs environmentally acquire symbionts during the first-instar 
stage and that symbionts are essential for nymphal growth and survival. This study highlights Cydnidae as the only 
pentatomoid family that includes species that environmentally acquire symbionts and those that vertically transmit 
symbionts, providing an ideal platform for comparative studies of the ecological and environmental factors that influ-
ence the evolution of symbiont transmission modes.
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Background
Diverse insects that feed on nutrient-limited diets, such 
as plant sap, vertebrate blood, and woody materials, 
harbor mutualistic symbiotic microorganisms that play 
important biological roles, including nutrient provision 
and food digestion [1–4]. These symbionts are present 
on the body surface, in the alimentary tract, within the 
body cavity, or even inside the cells of host insects [5, 6]. 
For example, the symbiotic bacterium Buchnera aphidi-
cola, which resides in the bacteriomes of aphids, provides 
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essential amino acids to the host insects [7]. Similarly, the 
symbiotic bacterium Stammera capleta, which is present 
in the foregut symbiotic organs of cassidine tortoise bee-
tles, upgrades the digestive capacity of the host insects 
[8].

Plant-feeding stinkbugs of the superfamilies Pentato-
moidea, Coreoidea and Lygaeoidea, all of which belong to 
the infraorder Pentatomomorpha (Insecta: Hemiptera), 
generally have mutualistic associations with gut symbi-
otic bacteria. These stinkbugs possess numerous sac-like 
outgrowths, called crypts, along the posterior region of 
the midgut (referred to as the midgut fourth section), 
where specific symbiotic bacteria are harbored extracel-
lularly [1, 9–13]. When symbionts are experimentally 
withheld, such aposymbiotic stinkbugs suffer substan-
tial fitness defects, including retarded growth, elevated 
mortality, morphological abnormalities, reduced off-
spring, and/or complete sterility [1, 14–45], indicating 
the important biological roles of symbionts in their hosts.

In the superfamily Pentatomoidea, gut symbiotic bac-
teria are usually members of the γ-Proteobacteria and are 
vertically transmitted from host mothers to offspring via 
egg surface contamination or symbiont-containing mate-
rials deposited near eggs or young nymphs. This mode of 
symbiont transmission has been demonstrated in fami-
lies such as Pentatomidae [15, 18, 21–23, 26, 29, 32–37, 
39, 40], Scutelleridae [28, 38, 46], Acanthosomatidae [20], 
Plataspidae [16, 17], Urostylididae [31], Parastrachiidae 
[25], and Cydnidae [14, 27, 47]. These vertically transmit-
ted symbionts are typically uncultivable, probably due to 
their adaptation to the intrahost environment. The only 
known exception among pentatomoid stinkbugs is the 
saw-toothed stinkbug Megymenum gracilicorne of the 
family Dinidoridae, in which cultivable γ-proteobacterial 
symbionts are not vertically transmitted, but acquired 
from environmental sources [43]. In the superfamilies 
Coreoidea and Lygaeoidea, gut symbiotic bacteria gener-
ally belong to the β-Proteobacteria and are acquired envi-
ronmentally. This mode of symbiont transmission has 
been demonstrated for families such as Alydidae [19, 30, 
48], Coreidae [41, 44, 45, 49], Blissidae [24], and Beryti-
dae [42], with a mixed mode of environmental and verti-
cal transmission documented in one blissid species [50]. 
These environmentally acquired symbiotic bacteria are 
often cultivable and can be isolated from both the envi-
ronment and the midgut crypts of stinkbugs. Given the 
interest of evolutionary biologists in the ecological and 
environmental factors influencing symbiont transmis-
sion modes (vertical, environmental, or mixed) [51–53], 
pentatomomorphan stinkbugs, which exhibit a variety of 
transmission modes, represent a fascinating insect group.

The pentatomoid family Cydnidae comprises over 144 
genera and at least 1,185 species worldwide, many of 

which are known as “burrower bugs” due to their fosso-
rial lifestyle, sucking plant roots and seeds [54]. Vertical 
symbiont transmission has been observed in four cydnid 
species, Cydnus atterimus (= Brachypelta atterima), Can-
thophorus niveimarginatus, Adomerus triguttulus, and A. 
rotundus [14, 27, 47], with no documented cases of envi-
ronmental symbiont acquisition in this insect group. The 
burrower bug Macroscytus japonensis (Fig. 1A) is widely 
distributed in eastern and southeastern Asian countries, 
including Japan [55]. Specific γ-proteobacterial gut sym-
bionts have been identified in two Japanese populations, 
but they are distantly related to the vertically transmitted 
symbionts of C. niveimarginatus, A. triguttulus, and A. 
rotundus [56], suggesting the possibility of environmental 
symbiont acquisition in M. japonensis. If confirmed, the 
family Cydnidae would encompass species that vertically 
transmit symbionts as well as those that environmentally 
acquire symbionts, making it a more compact and tracta-
ble insect group for investigating the evolution of symbi-
ont transmission modes. The present study, based on an 
extensive and detailed survey of field samples and rearing 
experiments, reports findings on environmental symbi-
ont acquisition, as well as symbiont diversity, cultivabil-
ity, and their essential role in host growth and survival in 
M. japonensis.

Fig. 1 Adult insect (a) and eggs (b) of M. japonensis 
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Materials and methods
Insect samples
We collected adult M. japonensis from leaf litter or by 
light trapping at 23 sites in Japan (Fig. S1). The insect 
samples used for the analysis of symbiont diversity and 
cultivability are listed in Table  S1. The insect samples 
used in the egg inspection and rearing experiments were 
collected in Itoshima, Fukuoka, Japan in 2022. All insect 
samples were brought to the laboratory and maintained 
at 25 °C under a long-day regimen (16 h light, 8 h dark) 
in sterilized Petri dishes (90 mm in diameter, 20 mm in 
height). These dishes were provided with autoclaved pea-
nuts and almonds as food [57] and autoclaved sand mois-
tened with sterilized water as shelter.

Symbiont cultivation and DNA preparation
Cultivability tests of midgut symbiotic bacteria were per-
formed as previously described for other pentatomoid 
stinkbugs with some modifications [35, 43]. The midgut 
fourth section was dissected from each adult insect in 
sterilized phosphate-buffered saline (PBS) (FUJIFILM 
Wako Pure Chemical) using fine forceps under a dissec-
tion microscope. The tissue was homogenized in 500 
µL of PBS in a plastic tube using a plastic pestle. Subse-
quently, 20 µL of the suspension was spread on an LB 
agar plate and incubated at 26  °C for 24  h. If colonies 
formed, they were subjected to DNA extraction using the 
NucleoSpin Tissue Kit (Macherey–Nagel), and the bacte-
rial isolates were stored as glycerol stocks at –80 °C. The 
remaining suspension was centrifuged at 13,000 rpm for 
1 min, and the precipitated bacterial cells and insect tis-
sue fragments were subjected to DNA extraction.

PCR, cloning, sequencing and molecular phylogenetic 
analyses
Bacterial genes were amplified from the DNA samples 
by PCR using AmpliTaq 360 DNA Polymerase (Applied 
Biosystems) and primers 16SA1 (5′- AGA GTT TGA 
TCM TGG CTC AG-3’) and 16SB1 (5’-TAC GGY TAC 
CTT GTT ACG ACT T-3′) for the 16S rRNA gene [58], 
and PANgroELF (5′-TCG ARC TGG AAG ACA AGT 
TCG-3′) and PANgroELR (5’-CTT CTT CGA TYT 
GCT GAC G -3′) for the groEL gene. The PCR products 
(1.5  kb for the16S rRNA gene and 0.9  kb for the groEL 
gene) were cloned and sequenced as described previ-
ously [20]. The insect mitochondrial cytochrome oxi-
dase I (COI) gene was also amplified using the primers 
LCO1490 (5′-GGT CAA CAA ATC ATA AAG ATA 
TTG G-3′) and HCO2198 (5′-TAA ACT TCA GGG 
TGA CCA AAA AAT CA-3′) [59] and subjected to 
direct sequencing. The COI gene of the closely related 
congeneric species M. fraterculus was also sequenced for 
use as an outgroup in phylogenetic analysis (see Table S1 

for sample information). The accession numbers of the 
nucleotide sequences determined in this study are listed 
in Table S1 and Table S2. Multiple alignments of nucleo-
tide sequences were generated using the program MUS-
CLE [60], from which gap-containing sites were removed. 
Substitution models were selected, and maximum-like-
lihood phylogenies were constructed using the program 
MEGA 7.0.26 [61].

Egg inspection
Unlike other pentatomoid stinkbugs, females of some 
cydnid species, including M. japonensis, do not form 
egg masses, but lay their eggs individually [62] (Fig. 1B). 
Six M. japonensis females were allowed to lay eggs in 
separate rearing containers. From each container, six 
eggs were collected, rinsed with sterile water to remove 
sand, individually crushed in a plastic tube using a plas-
tic pestle, and subjected to DNA extraction. Diagnostic 
PCR using primers 16SA1 and 16SB1 for the bacterial 
16S rRNA gene was performed to detect the presence of 
symbiotic bacteria on the egg surface. The quality of the 
template DNA samples was verified by PCR amplification 
of the insect mitochondrial COI gene. The DNA sample 
extracted from the midgut fourth section from an adult 
female (ITSM1) was used as a positive control for these 
PCRs.

Rearing experiment to confirm environmental symbiont 
acquisition
An isolated and preserved strain of the gut symbiont 
from an adult female (ITSM1; see Table  S1 for sample 
information) was cultured in LB liquid medium at 26 °C 
and diluted to  107–108  CFU   mL–1 in sterile water. Soil 
samples were collected from a site in Itoshima, Fukuoka, 
Japan, where M. japonensis is commonly found. About 
200 eggs were collected from rearing containers with 
field-collected adults, rinsed with sterile water, and 
placed in sterilized plastic Petri dishes (60 mm in diam-
eter, 15 mm in height) with 3–8 eggs per dish. Each Petri 
dish was assigned to one of the following experimental 
treatments: (1) sterile water treatment, (2) symbiont-sus-
pended water treatment, or (3) field-collected soil treat-
ment. In the sterile water treatment, food (autoclaved 
peanuts and almonds) and a piece of cotton soaked with 
sterile water were provided to each Petri dish (Fig. S2a). 
In the symbiont-suspended water treatment, food and a 
piece of cotton soaked with symbiont-suspended water, 
prepared as described above, were provided to each 
Petri dish (Fig. S2b). In the field-collected soil treatment, 
food and approximately 5  g of the soil sample soaked 
with sterile water were provided to each Petri dish (Fig. 
S2c). In all treatments, the eggs were incubated, and 
hatched nymphs (63 in sterile water treatment, 51 in 
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symbiont-suspended water treatment, and 50 in field-
collected soil treatment) were reared to the third-instar 
stage. Third-instar nymphs were then transferred to new 
sterile dishes (90 mm in diameter, 20 mm in height) and 
provided with food and a piece of cotton soaked with 
sterile water until all nymphs reached adulthood or died. 
All newly emerged adults were subjected to dissection of 
the midgut fourth section and DNA extraction. The 16S 
rRNA gene of the gut symbiotic bacteria was amplified, 
cloned, and sequenced as described above.

Results
Diversity of gut symbiotic bacteria
We examined 72 insect samples of M. japonensis from 
23 sites across the Japanese archipelago (see Table  S1 
and Fig. S1). The midgut fourth sections from these 
samples were subjected to DNA extraction, followed 
by PCR amplification and cloning of the bacterial 16S 
rRNA and groEL genes. For each gene, 3–5 clones per 
insect were sequenced, all of which yielded identical 
nucleotide sequences, suggesting that many of these 
bugs were likely colonized by a single predominant 
strain. Phylogenetic analysis of the 16S rRNA gene 
sequences revealed a remarkably high diversity of 
M. japonensis gut symbionts within the Enterobacte-
riaceae of the γ-Proteobacteria (Fig.  2). Phylogenetic 
analysis of the groEL gene sequences also showed 
results largely consistent with those obtained from the 
16S rRNA gene sequences (Fig. S3). These phyloge-
netic analyses revealed that the symbiotic bacteria of 
M. japonensis and other related Pantoea-allied bacte-
ria formed six distinct phylogenetic groups (hereafter 
referred to as groups 1–6). Note that the bootstrap 
support for some of these groups was low in the 16S 
rRNA phylogeny (Fig. 2), but significantly high (> 98% 
each) in the groEL phylogeny (Fig. S3). Group 1, the 
largest clade, included gut symbionts from 63.9% 
(46/72) of the M. japonensis samples. It also included 
previously reported gut symbionts of M. japonensis 
[56], the cultivable gut symbiont of the dinidorid stink-
bug Me. gracilicorne [43], an environmental bacterium, 
designated type X2, which was shown to be capable of 
symbiosis with the pentatomid stinkbug Plautia stali 
[35], and Pantoea sp. SOD02, a bacterial strain iso-
lated from an urban freshwater stream [63]. Group 2 
consisted of gut symbionts from 6.9% (5/72) of the M. 
japonensis samples and the gut symbiont of the cyd-
nid stinkbug Adrisa magna [56]. Group 3 comprised 
gut symbionts from 20.8% (15/72) of the M. japonensis 
samples, the cultivable gut symbiont, designated type 
D, of the pentatomid stinkbug P. stali [35], and Pantoea 
vagans ND02, a bacterial strain isolated from a water-
fall (GenBank accession number CP011427). Group 4 

comprised gut symbionts from 2.8% (2/72) of the M. 
japonensis samples, the cultivable gut symbiont of the 
dinidorid stinkbug Me. gracilicorne [43], the cultivable 
gut symbiont, designated type E, of the pentatomid 
stinkbug P. stali [35], and Pantoea agglomerans SZ009, 
a bacterium isolated from the surface of mangrove 
roots (GenBank accession number EU596536). Group 
5 consisted of gut symbionts from 4.2% (3/72) of the 
M. japonensis samples and Pantoea cypripedii B1 and 
NE1, bacterial strains isolated from the rhizosphere 
of leguminous plants (GenBank accession numbers 
JF430157 and CP024768). Group 6 consisted of gut 
symbionts from 1.4% (1/72) of the M. japonensis sam-
ples, the cultivable gut symbiont of the dinidorid stink-
bug Me. gracilicorne [43], the cultivable gut symbiont, 
designated as type C, of the pentatomid stinkbug P. 
stali [35], and Pantoea dispersa LMG2603, a bacterial 
strain isolated from the soil (GenBank accession num-
bers DQ504305 and LC007455). Mapping of the sym-
biont groups onto the mitochondrial phylogeny of the 
host revealed that the symbiont groups did not reflect 
the host genotypes, although group 1 and 3 symbionts 
tended to be located in specific mitochondrial clades 
(Fig. S4a). However, we did identify a geographic dif-
ference in the infection frequency of group 1–6 sym-
bionts between mainland and southwestern island 
populations. In mainland populations, group 1 symbi-
ont infections were most prevalent (85.2%) and groups 
4 and 5 symbiont infections were absent, whereas in 
southwest island populations, in groups 1 and 2 symbi-
ont infections were absent, while in group 3 symbiont 
infections were most prevalent (72.2%) (Fig. S4b).

Cultivability of gut symbiotic bacteria
After the homogenate of dissected midgut fourth sec-
tions was plated, bacterial colonies formed within 24  h 
in most M. japonensis samples. One to three colonies 
per insect sample were subjected to 16S rRNA gene 
sequencing and compared to the symbiont sequence 
derived from the midgut fourth section of the respec-
tive insect sample. In 86.1% (62/72) of the insect samples, 
the colony-derived sequences exhibited 100% identity 
with the midgut-derived symbiont sequence, indicating 
the cultivability of the gut symbiotic bacteria (Table S1). 
Symbiont cultivability was not dependent on symbiont 
phylogenetic group (Fig. 2 and Fig. S3).

No superficial bacterial contamination of eggs
When 36 eggs from six M. japonensis females were indi-
vidually subjected to diagnostic PCR using universal 
bacterial primers, no bacteria were detected in 34 eggs, 
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whereas a faint band was observed in two eggs after 35 
cycles of PCR (Fig. S5).

Confirmation of environmental symbiont acquisition
Figure  3 shows the survival curves from the first-instar 
stage to the adult stage in the three rearing experiment 
treatments. When newborn nymphs were reared under 
sterile conditions, only 1.6% (1/63) reached adulthood, 

with 98.4% (62/63) dying at the first instar. In contrast, 
when eggs and newborn nymphs were supplied with 
symbiont-suspended water, 52.9% (27/51) reached 
adulthood. Similarly, when eggs and newborn nymphs 
were provided with field-collected soil, 38.0% (19/50) 
reached adulthood. Survival to adult emergence was 
significantly greater in both the symbiont-suspended 
water and field-collected soil treatments than in the 

Fig. 2 Phylogenetic placement of gut symbiotic bacteria from field-collected M. japonensis adults based on 16S rRNA gene sequences. A maximum 
likelihood tree inferred from 1,413 aligned nucleotide sites is shown with bootstrap values of no less than 70%. The gut symbiotic bacteria of M. 
japonensis are colored, and the sample IDs are listed in Table S1. Asterisks denote gut symbiotic bacteria uncultivable on LB agar plates. The 
arrow indicates the isolated bacterial strain used in the rearing experiment. The gut symbiotic bacteria of other stinkbug species are highlighted 
in boldface. Brackets contain sequence accession numbers. Photos show the colony forms of gut symbiotic bacteria from each insect sample on LB 
agar plates
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sterile water treatment (both P < 0.0001, log-rank test 
with Bonferroni correction). There was no statistically 
significant difference in nymphal survival between the 

symbiont-suspended water and field-collected soil treat-
ment groups.

In all adult insects from the symbiont-suspended 
water treatment, the 16S rRNA gene sequences of their 
gut symbionts were identical to those of the experimen-
tally supplied bacterial isolate from ITSM1. In adult 
insects from the field-collected soil treatment, the 16S 
rRNA gene sequences of their gut symbionts exhibited 
variation, but phylogenetic analysis revealed that most 
of them (18 of 19) belonged to groups 1, 3, or 4 (Fig. 4). 
Only one adult insect (sample ID SOIL13) was associ-
ated with a gut symbiotic bacterium that did not fall into 
any of the groups 1–6, and BLAST searches with the 16S 
rRNA gene sequence as a query retrieved sequences of 
the Enterobacteriaceae, with the top hit being a Leclercia 
species isolated from human puncture fluid (GenBank 
accession number CP049786; 99.6% sequence identity) 
(Fig.  4). In an adult insect from the sterile water treat-
ment group, a 16S rRNA sequence belonging to group 1 
was detected in the midgut fourth section (Fig. 4), prob-
ably due to accidental contamination.

Discussion
This study demonstrated that the midgut symbiotic bac-
teria of M. japonensis are not vertically transmitted, but 
are environmentally acquired by the host nymphs in 
each generation. This is the first reported case of envi-
ronmental symbiont acquisition in stinkbugs of the pen-
tatomoid family Cydnidae, wherein vertical symbiont 
transmission has been reported in four other species [14, 

Fig. 3 Survival of M. japonensis nymphs in the rearing experiment. 
The orange line represents nymphs supplied with food and sterile 
water; the green line represents nymphs supplied with food 
and symbiont-suspended water; and the blue dotted line represents 
nymphs supplied with food and field-collected soil. Letters indicate 
significant differences in nymphal survival to adult emergence 
(P < 0.0001, log-rank test with Bonferroni correction)

Fig. 4 Phylogenetic placement of gut symbiotic bacteria associated with M. japonensis adults that emerged after nymphal incubation 
with field-collected soil. A maximum likelihood tree inferred from 1,446 aligned nucleotide sites of 16S rRNA gene sequences is shown 
with bootstrap values of no less than 70%. The gut symbionts acquired from the soil are highlighted in bold type, while the gut symbionts 
of field-collected M. japonensis adults are colored. The sample IDs are listed in Table S1 and Table S2. The arrow indicates the gut symbiont 
of an adult that emerged in the sterile water treatment
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27, 47]. We showed that the symbiotic bacteria of field-
collected M. japonensis adults exhibit remarkably high 
diversity, forming six distinct phylogenetic groups, and 
most of the symbionts are cultivable and closely related 
to free-living Pantoea-allied bacteria (Fig. 2 and Fig. S3). 
The symbiont cultivability shown in this study, 86.1% of 
the symbionts, is inherently underestimated because we 
used only LB medium and limited the incubation time 
to 24 h. These results strongly suggest that the symbiotic 
bacteria of M. japonensis are acquired from the environ-
ment. Furthermore, we showed that symbiont phylo-
genetic groups did not reflect the host phylogeny (Fig. 
S4a), and bacteria were rarely detected on the egg sur-
face (Fig. S5), suggesting the absence of vertical symbiont 
transmission. The rearing experiment confirmed envi-
ronmental symbiont acquisition: newly hatched nymphs 
supplied with a symbiont source (symbiont-suspended 
water or field-collected soil) acquired symbiotic bacteria 
and reached adulthood, whereas those deprived of such 
a symbiont source became aposymbiotic and died at the 
first instar (Figs.  3 and 4). To our knowledge, subsocial 
behavior in which mothers and offspring live together 
has not been reported in any Macroscytus species, nor 
did we observe such behavior in our M. japonensis rear-
ing system. Therefore, vertical symbiont transmission via 
coprophagy, as reported in the subsocial cydnid species 
C. atterimus [14], is unlikely in M. japonensis. The phylo-
genetic relationship between the genus Macroscytus and 
other cydnid genera in which vertical symbiont transmis-
sion has been reported, such as Cydnus, Adomerus and 
Canthophorus [14, 27, 47], is of evolutionary interest but 
is currently unresolved [64].

The saw-toothed stinkbug Me. gracilicorne, a member 
of the pentatomoid family Dinidoridae, has been shown 
to acquire γ-proteobacterial gut symbionts from the 
environment in each generation [43]. Interestingly, M. 
japonensis and Me. gracilicorne, which belong to differ-
ent genera, both acquire symbionts environmentally and 
share symbionts of groups 1, 4, and 6 (Fig.  2). In both 
M. japonensis (Fig.  2 and Fig. S3) and Me. Gracilicorne 
[43], group 1 symbiont infections are most prevalent. In 
addition, M. japonensis shares group 2 symbionts with 
the cydnid burrower bug Adrisa magna, whose sym-
biont transmission mode is currently unknown (Fig.  2 
and Fig. S3). We expect that future studies will discover 
more pentatomoid species that acquire symbionts envi-
ronmentally, especially from Cydnidae and Dinidoridae, 
and that these species may share symbiont groups with 
M. japonensis and Me. gracilicorne. Furthermore, the fact 
that vertically transmitted symbionts of pentatomid and 
scutellerid stinkbugs are included in the groups 1, 3, 4, 
and 6 (Fig. 2) [35, 38, 57] is also of great interest in the 
context of the evolution of symbiont transmission modes.

Given the vast diversity of microorganisms in the soil 
environment [65], it is likely that M. japonensis nymphs 
orally ingest diverse microorganisms, from which only 
symbiotic bacteria are selected to establish a specific 
infection in the crypts of the midgut fourth section. 
Although the mechanisms of symbiont selection in M. 
japonensis remain unknown, it has been documented 
that a specific constricted region between the third and 
fourth sections of the midgut is involved in symbiont 
sorting in the coreoid stinkbug Riptortus pedestris, in 
which nymphs acquire β-proteobacterial symbionts envi-
ronmentally [66]. As in R. pedestris and other pentatomo-
morphan stinkbugs, the midgut of M. japonensis consists 
of four morphologically distinct sections [11, 56]. There-
fore, symbiont sorting in the constricted region between 
the third and fourth sections of the midgut seems plau-
sible in M. japonensis but requires further investigation. 
The results of nymphal incubation with field-collected 
soil (Fig.  4) suggest that bacteria belonging not only to 
Pantoea but also to related genera, including Enterobac-
ter and Leclercia, may be able to establish infections in 
the midgut crypts of M. japonensis.

In the Japanese populations of M. japonensis, group 
1 symbiont infections were most prevalent (63.9%), fol-
lowed by group 3 infections (20.8%), with the remain-
der being minor (< 7%) (Fig. 2 and Fig. S3). Interestingly, 
nymphal incubation with field-collected soil resulted in 
similar symbiont infection frequencies in adult insects 
(Fig. 4). Several factors may account for these symbiont 
infection frequencies. Group 1 and 3 symbionts may be 
more favored by symbiont selection in M. japonensis than 
symbionts of the other groups. It is possible that the abil-
ity to colonize the midgut and/or fitness effects of group 
1 and 3 symbionts are superior to those of other symbi-
onts. Colonization competitiveness between symbionts 
can also influence the frequency of symbiont infections 
in host populations [45, 67]. Furthermore, group 1 and 3 
symbionts may be more abundant than other symbiont 
groups in the soil of M. japonensis field habitats. In this 
context, the soil microbiota in M. japonensis field habi-
tats is expected to differ between the Japanese mainland 
and southwestern island populations, where group 1 and 
3 symbiont infections are most prevalent, respectively 
(Fig. S4b). These hypotheses are experimentally testable 
and should be verified in future studies.

The rearing experiment revealed that all nymphs 
deprived of symbiont sources failed to reach the sec-
ond instar and died at the first instar (Fig.  3), indicat-
ing the essential nature of gut symbiotic bacteria for the 
growth and survival of M. japonensis nymphs. Genomic 
and physiological studies have revealed the provision of 
essential amino acids and vitamins by gut symbionts in 
plant sap-sucking stinkbugs of the pentatomoid families 
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Plataspidae and Urostylididae [31, 68, 69]. Both adults 
and nymphs of M. japonensis feed on seeds of various 
plants, including the wild cherry tree Prunus jamasakura 
(Rosaceae), the camphor tree Camphora officinarum 
(Lauraceae) and the kurogane holly Ilex rotunda (Aqui-
foliaceae) [62]. As these foods are likely protein-rich, it 
is conceivable that the gut symbionts of M. japonensis 
may provide the host with essential B vitamins for host 
growth and survival, as has been demonstrated in the 
seed-sucking cotton stainer bug Dysdercus fasciatus [70]. 
Future genomic and genetic studies of the cultivable sym-
bionts may elucidate the physiological aspects of the M. 
japonensis-gut bacteria symbiosis. Whether there are 
differences in symbiont physiological functions between 
symbiont groups or strains is another question that 
should be investigated in future studies.

The results of the rearing experiment (Fig. 3) also indi-
cate that M. japonensis nymphs acquire gut symbionts 
during the first instar. This is in contrast to a report from 
the coreoid stinkbug R. pedestris, in which symbiont 
acquisition from the environment occurs mainly in the 
second instar, because the midgut fourth section of first-
instar nymphs is atrophied and unsusceptible to symbi-
ont infection [48]. In pentatomoid stinkbugs in which gut 
symbionts are vertically transmitted, first-instar nymphs 
ingest gut symbionts upon hatching [5] and promptly 
establish symbiont infection of the midgut fourth section 
[71]. Therefore, the midgut fourth section of first-instar 
nymphs of M. japonensis, a member of the Pentato-
moidea, is also likely to be susceptible to symbiont infec-
tion. Recently, second-instar nymphs of the coreoid 
stinkbug Anasa tristis have been shown to exhibit active 
searching behavior to acquire β-proteobacterial sym-
bionts from the environment [72]. Whether first-instar 
nymphs of M. japonensis exhibit such behavior is cur-
rently unknown. First-instar nymphs of M. japonensis 
appear to be less mobile than second-instar nymphs of 
coreoid stinkbugs and are unlikely to be able to move 
over large areas. Therefore, whether first-instar nymphs 
of M. japonensis are able to acquire symbionts and which 
group of symbionts they acquire are likely to depend 
more on where their mothers oviposit than on nymphal 
behavior. The possibility that oviposition site selection by 
M. japonensis females may influence symbiont acquisi-
tion by their offspring also merits future study.

Conclusions
In conclusion, the gut symbiotic bacteria of the cyd-
nid burrower bug M. japonensis are environmentally 
acquired rather than being vertically transmitted. This 
study highlights Cydnidae as the only pentatomoid fam-
ily that includes species that environmentally acquire 

symbionts and those that vertically transmit symbionts, 
providing an ideal platform for comparative studies of 
the ecological and environmental factors that influence 
the evolution of symbiont transmission modes. Future 
studies should aim to comprehensively investigate sym-
biont transmission modes in cydnid genera and species 
as well as their phylogenetic relationships.
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