Goethe JW. Das Schädelgrüt aus sechs Wirbelknochen aufgebaut. Zur Naturwissenschaft überhaupt, besonders zur Morphologie II 2. 1790.
Oken L. Über die Bedeutung der Schädelknochen. Bamberg: Göbhardt; 1807.
Google Scholar
Goodrich ES. On the development of the segments of the head in Scyllium. QJ Microsc Sci. 1918;63:1–30.
Google Scholar
Onai T, Irie N, Kuratani S. The evolutionary origin of the vertebrate body plan: the problem of head segmentation. Annu Rev Genomics Human Genet. 2014;15:443–59. doi:10.1146/annurev-genom-091212-153404.
Article
CAS
Google Scholar
Holland LZ, Onai T. Early development of cephalochordate (amphioxus). WIREs Dev Biol. 2011;1:167–83.
Article
Google Scholar
Kuratani S. Is the vertebrate head segmented?–evolutionary and developmental considerations. Integr Comp Biol. 2008;48(5):647–57.
Article
PubMed Central
PubMed
Google Scholar
Holland LZ, Holland ND, Gilland E. Amphioxus and the evolution of head segmentation. Integr Comp Biol. 2008;48(5):630–46.
Article
PubMed
Google Scholar
Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, et al. The amphioxus genome and the evolution of the chordate karyotype. Nature. 2008;453(7198):1064–71.
Article
CAS
PubMed
Google Scholar
Beaster-Jones L, Kaltenbach SL, Koop D, Yuan S, Chastain R, Holland LZ. Expression of somite segmentation genes in amphioxus: a clock without a wavefront? Dev Genes Evol. 2008;218(11–12):599–611.
Article
CAS
PubMed
Google Scholar
Pourquie O. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell. 2011;145(5):650–63.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sedgwick A. On the origin of metameric segmentation and some other morphological questions. Q J Microsc Sci. 1884;24:43–82 + pl. II-III.
Google Scholar
Hejnol A, Martindale MQ. Acoel development supports a simple planula-like urbilaterian. Phil Trans R Soc B. 2008;363(1496):1493–501.
Article
PubMed Central
PubMed
Google Scholar
Remane A. Zur Metamerie, Metaerismen und Metamerisation bei Wirbeltieren. Zool Anz. 1963;170:489–502.
Google Scholar
Masterman AT. On the diplochorda. Q J Microsc Sci. 1898;40:281–366.
Google Scholar
Hubaud A, Pourquie O. Signalling dynamics in vertebrate segmentation. Nat Rev Mol Cell Biol. 2014;15(11):709–21.
Article
CAS
PubMed
Google Scholar
Holley SA, Nusslein-Volhard C. Somitogenesis in zebrafish. Curr Top Dev Biol. 2000;47:247–77.
Article
CAS
PubMed
Google Scholar
Eckalbar WL, Lasku E, Infante CR, Elsey RM, Markov GJ, Allen AN, et al. Somitogenesis in the anole lizard and alligator reveals evolutionary convergence and divergence in the amniote segmentation clock. Dev Biol. 2012;363(1):308–19.
Article
CAS
PubMed
Google Scholar
Morimoto M, Takahashi Y, Endo M, Saga Y. The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature. 2005;435(7040):354–9.
Article
CAS
PubMed
Google Scholar
Rasmussen SL, Holland LZ, Schubert M, Beaster-Jones L, Holland ND. Amphioxus AmphiDelta: evolution of Delta protein structure, segmentation, and neurogenesis. Genesis. 2007;45(3):113–22.
Article
CAS
PubMed
Google Scholar
Mazet F, Shimeld SM. Characterisation of an amphioxus Fringe gene and the evolution of the vertebrate segmentation clock. Dev Genes Evol. 2003;213(10):505–9.
Article
CAS
PubMed
Google Scholar
Onai T, Yu JK, Blitz IL, Cho KW, Holland LZ. Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev Biol. 2010;344(1):377–89. doi:10.1016/j.ydbio.2010.05.016.
Article
CAS
PubMed
Google Scholar
Nieuwkoop PD, Faber J. Normal table of Xenopus laevis. Amsterdam: North-Holland Publishing Co; 1956.
Google Scholar
Lu TM, Luo YJ, Yu JK. BMP and Delta/Notch signaling control the development of amphioxus epidermal sensory neurons: insights into the evolution of the peripheral sensory system. Development. 2012;139(11):2020–30.
Article
CAS
PubMed
Google Scholar
Onai T, Sasai N, Matsui M, Sasai Y. Xenopus XsalF: anterior neuroectodermal specification by attenuating cellular responsiveness to Wnt signaling. Dev Cell. 2004;7(1):95–106.
Article
CAS
PubMed
Google Scholar
Onai T, Takai A, Setiamarga DH, Holland LZ. Essential role of Dkk3 for head formation by inhibiting Wnt/beta-catenin and Nodal/Vg1 signaling pathways in the basal chordate amphioxus. Evol Dev. 2012;14(4):338–50.
Article
CAS
PubMed
Google Scholar
Minguillon C, Jimenez-Delgado S, Panopoulou G, Garcia-Fernandez J. The amphioxus Hairy family: differential fate after duplication. Development. 2003;130(24):5903–14.
Article
CAS
PubMed
Google Scholar
Schubert M, Meulemans D, Bronner-Fraser M, Holland LZ, Holland ND. Differential mesodermal expression of two amphioxus MyoD family members (AmphiMRF1 and AmphiMRF2). Gene Expr Patterns. 2003;3(2):199–202.
Article
CAS
PubMed
Google Scholar
Cho KW, Blumberg B, Steinbeisser H, De Robertis EM. Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox gene goosecoid. Cell. 1991;67(6):1111–20.
Article
PubMed Central
CAS
PubMed
Google Scholar
Smith JC, Price BM, Green JB, Weigel D, Herrmann BG. Expression of a Xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell. 1991;67(1):79–87.
Article
CAS
PubMed
Google Scholar
Peres JN, McNulty CL, Durston AJ. Interaction between X-Delta-2 and Hox genes regulates segmentation and patterning of the anteroposterior axis. Mech Dev. 2006;123(4):321–33.
Article
CAS
PubMed
Google Scholar
Hopwood ND, Pluck A, Gurdon JB. MyoD expression in the forming somites is an early response to mesoderm induction in Xenopus embryos. EMBO J. 1989;8(11):3409–17.
PubMed Central
CAS
PubMed
Google Scholar
Ataliotis P, Ivins S, Mohun TJ, Scambler PJ. XTbx1 is a transcriptional activator involved in head and pharyngeal arch development in Xenopus laevis. Dev Dyn. 2005;232(4):979–91.
Article
CAS
PubMed
Google Scholar
Zhang N, Gridley T. Defects in somite formation in lunatic fringe-deficient mice. Nature. 1998;394(6691):374–7.
Article
CAS
PubMed
Google Scholar
Dale JK, Maroto M, Dequeant ML, Malapert P, McGrew M, Pourquie O. Periodic notch inhibition by lunatic fringe underlies the chick segmentation clock. Nature. 2003;421(6920):275–8.
Article
CAS
PubMed
Google Scholar
Kusakabe R, Satoh N, Holland LZ, Kusakabe T. Genomic organization and evolution of actin genes in the amphioxus Branchiostoma belcheri and Branchiostoma floridae. Gene. 1999;227(1):1–10.
Article
CAS
PubMed
Google Scholar
Kusakabe R, Kusakabe T, Satoh N, Holland ND, Holland LZ. Differential gene expression and intracellular mRNA localization of amphioxus actin isoforms throughout development: implications for conserved mechanisms of chordate development. Dev Genes Evol. 1997;207:203–15.
Article
CAS
Google Scholar
Winklbauer R, Damm EW. Internalizing the vegetal cell mass before and during amphibian gastrulation: vegetal rotation and related movements. WIREs Dev Biol. 2012;1:301–6.
Article
CAS
Google Scholar
Holland LZ, Kene M, Williams NA, Holland ND. Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development. 1997;124(9):1723–32.
CAS
PubMed
Google Scholar
Bertrand S, Camasses A, Somorjai I, Belgacem MR, Chabrol O, Escande ML, et al. Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proc Natl Acad Sci U S A. 2011;108(22):9160–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Haeckel E. The gastraea-theory, the phylogenetic classification of the animal kingdom and the homology of the germ-lamellae. Q J Microsc Sci. 1874;14:142–65. 223–47.
Google Scholar
Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature. 2008;452(7188):745–9.
Article
CAS
PubMed
Google Scholar
Bone Q. The origin of the chordates. J Linn Soc Lond. 1960;44:252–69.
Article
Google Scholar
Wicht H, Lacalli TC. The nervous system of amphioxus: structure, development, and evolutionary significance. Can J Zool. 2005;83:122–50.
Article
Google Scholar
Martindale MQ, Pang K, Finnerty JR. Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development. 2004;131(10):2463–74.
Article
CAS
PubMed
Google Scholar
Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, et al. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science. 2013;342(6164):1242592.
Article
PubMed Central
PubMed
Google Scholar
Kaul-Strehlow S, Stach T. A detailed description of the development of the hemichordate Saccoglossus kowalevskii using SEM, TEM, histology and 3D-reconstructions. Front Zool. 2013;10(1):53.
Article
PubMed Central
PubMed
Google Scholar
Green SA, Norris RP, Terasaki M, Lowe CJ. FGF signaling induces mesoderm in the hemichordate Saccoglossus kowalevskii. Development. 2013;140(5):1024–33.
Article
PubMed Central
CAS
PubMed
Google Scholar