The most detailed fossil evidence about the neurocranium of early vertebrates comes from the jawless osteostracans [14, 16, 18, 39] and galeaspids [20], and the jawed placoderms [15, 17, 21, 22]. These groups all have perichondrally ossified braincases, which preserve the morphology of the cranial cavity, nerve canals and vascular canals. Another fossil jawless group, the heterostracans, lack perichondral ossification, but show faint impressions of the brain, semicircular canals, and branchial pouches on the inner surface of the dermal bones of the head shield [39]. As mentioned above, all these fossil groups belong to the gnathostome stem group. In the older literature the jawless stem gnathostomes are often referred to, collectively, as ‘ostracoderms’ (see above). The uppermost part of the stem is composed of the placoderms, which are themselves paraphyletic (i.e. some placoderms are more closely related to crown gnathostomes than others) [21, 22, 40]. Below them sit the osteostracans, followed by the galeaspids; both groups are monophyletic (Fig. 4). Together, these fossil groups straddle the transition from jawless to jawed vertebrates.
Osteostracans and galeaspids have broad ‘head shields’ that in fact incorporate the entire craniopharyngeal region as far back as the pectoral fins (if present). The neurocranium, which is not subdivided by sutures, is very broad and covers the entire dorsal surface of the gill region. Both groups have a nasohypophyseal duct with a dorsally positioned external opening. The hyoidean branchial pouch appears to have been developed into a normal full-size gill, similar to those on the branchial arches (Fig. 5).
Past analyses of the fossil jawless vertebrates have been greatly influenced by the perception that osteostracans are essentially ‘lampreys in armour’. This idea originated from the observation that the cranial cavity ends anteriorly in a small, ventrally closed nasohypophyseal duct, which opens between the eyes in a lamprey-like manner [14, 16, 18, 39]. However, the positional relationship of the pharynx to the cranial cavity and nasohypophyseal duct is radically different in osteostracans compared to lampreys and other vertebrates (Fig. 5).
The branchial apparatus of osteostracans is displaced so far anteriorly that not only the hyoid gill pouch but also the first two branchial gill pouches lie anterior to the eyes [14, 16, 39]. This uniquely specialized morphology means that the nasohypophyseal duct cannot have a ventral opening onto the palate, because the position that this opening would occupy is already filled by the dorsal aorta of the branchial apparatus (see Fig. 349a in Reference [39]). The apparent similarity with the ventrally closed nasohypophyseal duct of a lamprey, which does not have this positional relationship to the gills, is thus probably convergent.
The specialized pharyngeal morphology of osteostracans limits their utility for investigating the evolution of the cranial cell population map. If we assume that the trigeminal crest cells descended in their customary place, between the optic and otic vesicles, we are forced to conclude that the resulting premandibular and mandibular ectomesenchyme underwent a dramatic forward migration to reach its final destination. The picture is made still more complicated by fan-shaped arrays of canals, emanating from the saccular regions of the inner ears, which terminate near the lateral margins of the head shield and are believed to have had a sensory function (Fig. 5c, d). As the inner ears of living vertebrates are always enclosed within the mesodermal otic capsule, these canal arrays suggest that otic capsule mesoderm extended laterally, above the branchial ectomesenchyme of the gill region, almost to the edges of the shield. However, it is impossible to map the precise boundaries between the premandibular ectomesenchyme (prechordal part of the neurocranium) and mesoderm (chordal cranium), let alone between different components of the ectomesenchyme.
By contrast, galeaspids, heterostracans and placoderms all have hyoid- and branchial arches posterior to the eye. There is some evidence that heterostracans had a hagfish-like nasohypophyseal duct that opened anteriorly [39], but as their neurocranial anatomy cannot be reconstructed in detail they will not be considered further. In galeaspids the nasohypophyseal duct, which is large and either oval or slit-shaped, opens dorsally on top of the head in front of the eyes, and ventrally on the palate (Fig. 5a, b). The nasal sacs and hypophysis open into the duct [20]. Interestingly, the anteriorly directed hypophysis and the olfactory tracts are separated by neurocranial tissue as in crown gnathostomes, which forms a short spike projecting into the nasohypophyseal duct. This spike has been interpreted as a rudimentary trabecula [20]. Its existence suggests that galeaspids had separate nasal and hypophyseal placodes, rather than a single nasohypophyseal placode as in cyclostomes, allowing premandibular ectomesenchyme to differentiate into primitive prechordal cranium that grew forward between the placodes.
Galeaspids, osteostracans and the majority of placoderms all have very short forebrains, with the result that the cranial cavity hardly extends in front of the eyes [14,15,16,17,18, 21, 22, 39]. This resembles the condition in extant cyclostomes and most probably represents retention of the primitive vertebrate condition. Nevertheless, the broad and slab-like neurocrania of galeaspids and osteostracans extend not only laterally to cover the whole branchial region, but also anterior to the eyes and nasohypophyseal duct, right to the tip of the snout (Fig. 5). This preorbital region effectively corresponds to the lamprey upper lip [27]. In galeaspids the entire preorbital region lies anterior to the first pharyngeal pouch, and is presumably composed of some combination of mandibular and premandibular ectomesenchyme; in osteostracans it may also incorporate hyoid and even branchial ectomesenchyme, due to the anterior displacement of the pharynx. In other words, the neurocranium of these jawless stem gnathostomes incorporates an anterior component derived from premandibular ectomesenchyme, but unlike in crown gnathostomes it does not underlie the brain as the trabecula.
Placoderms have separate left and right nasal sacs opening onto the face, and an adenohypophysis opening onto the palate, in the typical gnathostome manner; there is no nasohypophyseal duct. As mentioned above, the forebrain cavity is usually very short. It is floored by a part of the neurocranium that lies in front of the buccohypophyseal foramen, medial to the palatoquadrates, and can thus be identified as a trabecular region (Fig. 5). Compared to crown gnathostomes this region is very broad, reflecting the generally broad and flat character of the neurocranium (probably a primitive character retained from jawless ancestors; see above).
Interestingly, its length is highly variable. In arthrodire placoderms (Fig. 5h-j), and in the so-called ‘maxillate placoderms’ which may be close to the origin of osteichthyans, the nasal capsules are positioned terminally on the snout and the trabecular region is short, reflecting the short forebrain cavity [15, 19, 39, 40]. However, in a few placoderms including the acanthothoracid Romundina [21, 22], the trabecular region is developed into a projecting ‘upper lip’ that extends forward below and in front of the nasal capsules (Fig. 5e-g). Its ventral position, and the fact that it is flanked throughout its length by the palatoquadrates, indicates that it is composed of premandibular infraoptic ectomesenchyme, the anlage that gives rise to the upper lip in the lamprey. In these placoderms the crest-derived part of the neurocranium is thus largely, but not entirely, anterior to the cranial cavity. The similarity with jawless vertebrates, especially galeaspids, is obvious and probably indicates that this is a retained primitive character [21].
It seems that the origin of the crown gnathostome trabeculae involved several steps and provides an example of how a seemingly trivial anatomical modification can open the door to major morphological change. In a cyclostome, the forebrain cavity is floored only by the soft dorsal wall of the nasohypophyseal duct. The first step in the origin of the trabeculae, starting perhaps already in galeaspids but brought to completion in early placoderms, was the re-routing of at least part of the premandibular ectomesenchyme into the space between the hypophyseal and nasal placodes. This obliterated the nasohypophyseal duct (although the buccohypophyseal foramen can be considered a remnant of its ventral opening on the palate), and gave the forebrain cavity a skeletal floor [41].
Initially the forebrain remained very short, as did the trabecular region sensu stricto, i.e. the part of the prechordal neurocranium that floors the forebrain cavity. The loss of the projecting premandibular “upper lip” in arthrodires and maxillate placoderms was not immediately accompanied by lengthening of the forebrain, but simply led to a shortening of the preorbital face. However, the fact that the forebrain was now enclosed in a protective skeletal box meant that it could be lengthened without deleterious effects, in a way that the unprotected forebrain of a cyclostome cannot. Within a relatively short time period, an elongated forebrain evolved at least three times in parallel in early jawed vertebrates; in tapinosteid arthrodires, in macropetalichthyid placoderms, and in crown gnathostomes [15, 21].