Raimondi PT, Morse ANC. The consequences of complex larval behavior in a coral. Ecology. 2000;81(11):3193–211. https://doi.org/10.1890/0012-9658(2000)081[3193:TCOCLB]2.0.CO;2.
Article
Google Scholar
Müller WA, Leitz T. Metamorphosis in the cnidaria. Can J Zool NRC Res Press. 2002;80(10):1755–71. https://doi.org/10.1139/z02-130.
Article
Google Scholar
Doropoulos C, Roff G, Bozec Y-M, Zupan M, Werminghausen J, Mumby PJ. Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol Monogr. 2016;86(1):20–44. https://doi.org/10.1890/15-0668.1.
Article
Google Scholar
Tebben J, Motti CA, Siboni N, Tapiolas DM, Negri AP, Schupp PJ, et al. Chemical mediation of coral larval settlement by crustose coralline algae. Sci Rep. 2015;5(1):10803. https://doi.org/10.1038/srep10803.
Tebben J, Tapiolas DM, Motti CA, Abrego D, Negri AP, Blackall LL, et al. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas Bacterium. PLoS One. 2011;6(4):e19082. https://doi.org/10.1371/journal.pone.0019082.
Siboni N, Abrego D, Seneca F, Motti CA, Andreakis N, Tebben J, et al. Using bacterial extract along with differential gene expression in Acropora millepora larvae to decouple the processes of attachment and metamorphosis. PLoS One. 2012;7:e37774. https://doi.org/10.1371/journal.pone.0037774.
Sneed JM, Sharp KH, Ritchie KB, Paul VJ. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple caribbean corals. Proc R Soc B Biol Sci. 2014;281:20133086. https://doi.org/10.1098/rspb.2013.3086.
Heyward AJ, Negri AP. Natural inducers for coral larval metamorphosis. Coral Reefs. 1999;18(3):273–9. https://doi.org/10.1007/s003380050193.
Article
Google Scholar
Jorissen H, Galand PE, Bonnard I, Meiling S, Raviglione D, Meistertzheim A-L, et al. Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures. Sci Rep. 2021;11(1):14610. https://doi.org/10.1038/s41598-021-94096-6.
Negri AP, Webster NS, Hill RT, Heyward AJ. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar Ecol Prog Ser. 2001;223:121–31. https://doi.org/10.3354/meps223121.
Article
Google Scholar
Hayward DC, Catmull J, Reece-Hoyes JS, Berghammer H, Dodd H, Hann SJ, et al. Gene structure and larval expression of cnox-2Am from the coral Acropora millepora. Dev Genes Evol. 2001;211(1):10–9. https://doi.org/10.1007/s004270000112.
Iwao K, Fujisawa T, Hatta M. A cnidarian neuropeptide of the GLWamide family induces metamorphosis of reef-building corals in the genus Acropora. Coral Reefs. 2002;21(2):127–9. https://doi.org/10.1007/s00338-002-0219-8.
Erwin PM, Szmant AM. Settlement induction of Acropora palmata planulae by a GLW-amide neuropeptide. Coral Reefs. 2010;29(4):929–39. https://doi.org/10.1007/s00338-010-0634-1.
Article
Google Scholar
Hatta M, Iwao K. Metamorphosis induction and its possible application to coral seedlings production. Recent Adv Mar Sci Technol. 2002;2003:465–70.
Google Scholar
Attenborough RMF, Hayward DC, Wiedemann U, Forêt S, Miller DJ, Ball EE. Expression of the neuropeptides RFamide and LWamide during development of the coral Acropora millepora in relation to settlement and metamorphosis. Dev Biol. 2019;446(1):56–67. https://doi.org/10.1016/j.ydbio.2018.11.022.
Takahashi T, Muneoka Y, Lohmann J, de Haro MSL, Solleder G, Bosch TCG, et al. Systematic isolation of peptide signal molecules regulating development in hydra: LWamide and PW families. Proc Natl Acad Sci. 1997;94(4):1241–6. https://doi.org/10.1073/pnas.94.4.1241.
Leitz T, Morand K, Mann M. Metamorphosin A: A novel peptide controlling development of the lower metazoan Hydractinia echinata (Coelenterata, Hydrozoa). Dev Biol. 1994;163(2):440–6. https://doi.org/10.1006/dbio.1994.1160.
Meyer E, Aglyamova GV, Matz MV. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure. Mol Ecol. 2011;20(17):3599–616. https://doi.org/10.1111/j.1365-294X.2011.05205.x.
Article
CAS
PubMed
Google Scholar
Grasso LC, Negri AP, Fôret S, Saint R, Hayward DC, Miller DJ, et al. The biology of coral metamorphosis: molecular responses of larvae to inducers of settlement and metamorphosis. Dev Biol. 2011;353(2):411–9. https://doi.org/10.1016/j.ydbio.2011.02.010.
Grasso LC, Maindonald J, Rudd S, Hayward DC, Saint R, Miller DJ, et al. Microarray analysis identifies candidate genes for key roles in coral development. BMC Genomics. 2008;9(1):540. https://doi.org/10.1186/1471-2164-9-540.
Strader ME, Aglyamova GV, Matz MV. Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral. BMC Genomics. 2018;19(1):17. https://doi.org/10.1186/s12864-017-4392-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayward DC, Hetherington S, Behm CA, Grasso LC, Forêt S, Miller DJ, et al. Differential gene expression at coral settlement and metamorphosis - A subtractive hybridization study. PLoS One. 2011;6:e26411. https://doi.org/10.1371/journal.pone.0026411.
Harii S, Nadaoka K, Yamamoto M, Iwao K. Temporal changes in settlement, lipid content and lipid composition of larvae of the spawning hermatypic coral Acropora tenuis. Mar Ecol Prog Ser. 2007;346:89–96. https://doi.org/10.3354/meps07114.
Article
CAS
Google Scholar
Wolfowicz I, Baumgarten S, Voss PA, Hambleton EA, Voolstra CR, Hatta M, et al. Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci Rep. 2016;6:32366. https://doi.org/10.1038/srep32366.
Cooke I, Ying H, Forêt S, Bongaerts P, Strugnell JM, Simakov O, et al. Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts. Sci Adv. 2020;6(48):eabc6318. https://doi.org/10.1126/sciadv.abc6318.
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635.
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323. https://doi.org/10.1186/1471-2105-12-323.
Article
CAS
PubMed
PubMed Central
Google Scholar
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinforma Oxf Engl. 2010;26(1):139–40. https://doi.org/10.1093/bioinformatics/btp616.
Article
CAS
Google Scholar
Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinforma Oxf Engl. 2014;30(9):1236–40. https://doi.org/10.1093/bioinformatics/btu031.
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14. https://doi.org/10.1186/gb-2010-11-2-r14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35(suppl_2):W182–5. https://doi.org/10.1093/nar/gkm321.
Article
PubMed
PubMed Central
Google Scholar
Kanehisa M, Sato Y. KEGG mapper for inferring cellular functions from protein sequences. Protein Sci Publ Protein Soc. 2020;29(1):28–35. https://doi.org/10.1002/pro.3711.
Article
CAS
Google Scholar
Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019;47(W1):W199–205. https://doi.org/10.1093/nar/gkz401.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 2021;49(D1):D412–9. https://doi.org/10.1093/nar/gkaa913.
Frickey T, Lupas A. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics. 2004;20(18):3702–4. https://doi.org/10.1093/bioinformatics/bth444.
Article
CAS
PubMed
Google Scholar
Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science. 2007;317(5834):86–94. https://doi.org/10.1126/science.1139158.
Bauknecht P, Jékely G. Large-scale combinatorial deorphanization of Platynereis neuropeptide GPCRs. Cell Rep. 2015;12(4):684–93. https://doi.org/10.1016/j.celrep.2015.06.052.
Article
CAS
PubMed
Google Scholar
Protein Sequence Analysis Using the MPI Bioinformatics Toolkit. Gabler F, Nam SZ, Till S, Mirdita M, Steinegger M, Söding J, Lupas AN, Alva V. Curr Protoc Bioinformatics. 2020;72(1):e108. https://doi.org/10.1002/cpbi.108.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9(1):559. https://doi.org/10.1186/1471-2105-9-559.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag; 2016. Available from: https://ggplot2-book.org/
Book
Google Scholar
Reyes-Bermudez A, Lin Z, Hayward DC, Miller DJ, Ball EE. Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora. BMC Evol Biol. 2009;9(1):178. https://doi.org/10.1186/1471-2148-9-178.
Hirose M, Yamamoto H, Nonaka M. Metamorphosis and acquisition of symbiotic algae in planula larvae and primary polyps of Acropora spp. Coral Reefs. 2008;27(2):247–54. https://doi.org/10.1007/s00338-007-0330-y.
Haryanti D, Hidaka M. Developmental changes in the intensity and distribution pattern of green fluorescence in coral larvae and juveniles. Galaxea J Coral Reef Stud. 2019;21(1):13–25. https://doi.org/10.3755/galaxea.21.1_13.
Article
Google Scholar
Aihara Y, Maruyama S, Baird AH, Iguchi A, Takahashi S, Minagawa J. Green fluorescence from cnidarian hosts attracts symbiotic algae. Proc Natl Acad Sci. 2019;116(6):2118–23. https://doi.org/10.1073/pnas.1812257116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rachdi L, Maugein A, Pechberty S, Armanet M, Hamroune J, Ravassard P, et al. Regulated expression and function of the GABAB receptor in human pancreatic beta cell line and islets. Sci Rep. 2020;10(1):13469. https://doi.org/10.1038/s41598-020-69758-6.
Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC, Snyder P, et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature. 2000;407(6801):186–9. https://doi.org/10.1038/35025063.
Plickert G, Jacoby V, Frank U, Müller WA, Mokady O. Wnt signaling in hydroid development: formation of the primary body axis in embryogenesis and its subsequent patterning. Dev Biol. 2006;298(2):368–78. https://doi.org/10.1016/j.ydbio.2006.06.043.
Article
CAS
PubMed
Google Scholar
Konovalova A, Søgaard-Andersen L, Kroos L. Regulated proteolysis in bacterial development. FEMS Microbiol Rev. 2014;38(3):493–522. https://doi.org/10.1111/1574-6976.12050.
Article
CAS
PubMed
Google Scholar
Lecointe A, Domart-Coulon I, Paris A, Meibom A. Cell proliferation and migration during early development of a symbiotic scleractinian coral. Proc R Soc B Biol Sci. 2016;283(1831):20160206. https://doi.org/10.1098/rspb.2016.0206.
Article
CAS
Google Scholar
Cleves PA, Strader ME, Bay LK, Pringle JR, Matz MV. CRISPR/Cas9-mediated genome editing in a reef-building coral. Proc Natl Acad Sci. 2018;115(20):5235–40. https://doi.org/10.1073/pnas.1722151115.
Article
CAS
PubMed
PubMed Central
Google Scholar