Graur D, Li W-H. Fundamentals of molecular evolution. 2nd ed. Sinauer: Sunderland, Ma; 2000.
Google Scholar
Ohno S. Evolution by gene duplication. Berlin, New York: Springer-Verlag; 1970.
Book
Google Scholar
Kuraku S, Meyer A, Kuratani S. Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol Biol Evol. 2009;26(1):47–59.
Article
CAS
PubMed
Google Scholar
Dehal P, Boore JL. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol. 2005;3(10):e314.
Article
PubMed
PubMed Central
Google Scholar
Holland PW, Garcia-Fernandez J, Williams NA, Sidow A. Gene duplications and the origins of vertebrate development. Dev Suppl. 1994:125–33.
Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y. Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci U S A. 2004;101(6):1638–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Taylor JS, Van de Peer Y, Braasch I, Meyer A. Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond Ser B Biol Sci. 2001;356(1414):1661–79.
Article
CAS
Google Scholar
Wittbrodt J, Meyer A, Schartl M. More genes in fish? BioEssays. 1998;20(6):511–5.
Article
Google Scholar
Eschmeyer WN, Fong JD. Species of fishes by family/subfamily. In., march 1. EDN. 2017;
The IUCN Red List of Threatened Species, Version 2016–3 [http://www.iucnredlist.org].
Clarke JT, Lloyd GT, Friedman M. Little evidence for enhanced phenotypic evolution in early teleosts relative to their living fossil sister group. Proc Natl Acad Sci U S A. 2016;113(41):11531–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Glasauer SM, Neuhauss SC. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Gen Genomics. 2014;289(6):1045–60.
Article
CAS
Google Scholar
Hoegg S, Brinkmann H, Taylor JS, Meyer A. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol. 2004;59(2):190–203.
Article
CAS
PubMed
Google Scholar
Crescitelli F, McFall-Ngai M, Horwitz J. The visual pigment sensitivity hypothesis: further evidence from fishes of varying habitats. J Comp Physiol A. 1985;157(3):323–33.
Article
CAS
PubMed
Google Scholar
Temple SE, Veldhoen KM, Phelan JT, Veldhoen NJ, Hawryshyn CW. Ontogenetic changes in photoreceptor opsin gene expression in coho salmon (Oncorhynchus kisutch, Walbaum). J Exp Biol. 2008;211(Pt 24):3879–88.
Article
CAS
PubMed
Google Scholar
Carlisle DB, Denton EJ. On the metamorphosis of the visual pigments of Anguilla anguilla (L.). J Mar Biol Assoc U K. 1959;38(1):97–102.
Article
Google Scholar
Nakamura Y, Mori K, Saitoh K, Oshima K, Mekuchi M, Sugaya T, Shigenobu Y, Ojima N, Muta S, Fujiwara A, et al. Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna. Proc Natl Acad Sci U S A. 2013;110(27):11061–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loew ER, McFarland WN, Margulies D. Developmental changes in the visual pigments of the yellowfin tuna, Thunnus albacares. Mar Fresh Behav Physiol. 2002;35:235–46.
Article
CAS
Google Scholar
Lagman D, Ocampo Daza D, Widmark J, Abalo XM, Sundstrom G, Larhammar D. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications. BMC Evol Biol. 2013;13:238.
Article
PubMed
PubMed Central
Google Scholar
Rennison DJ, Owens GL, Taylor JS. Opsin gene duplication and divergence in ray-finned fish. Mol Phylogenet Evol. 2012;62(3):986–1008.
Article
PubMed
Google Scholar
Gojobori J, Innan H. Potential of fish opsin gene duplications to evolve new adaptive functions. Trends Genet. 2009;25(5):198–202.
Article
CAS
PubMed
Google Scholar
Stuart JA, Birge RR. Characterization of the primary photochemical events in bacteriorhodopsin and rhodopsin. Biomembranes: A Multi-Volume Treatise. 1996;2:33–139.
Google Scholar
Venkatesh B, Ning Y, Brenner S. Late changes in spliceosomal introns define clades in vertebrate evolution. Proc Natl Acad Sci U S A. 1999;96(18):10267–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mano H, Kojima D, Fukada Y. Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. Brain Res Mol Brain Res. 1999;73(1–2):110–8.
Article
CAS
PubMed
Google Scholar
Chen W-J, Bonillo C, Lecointre G. Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol Phylogenet Evol. 2003;26(2):262–88.
Article
CAS
PubMed
Google Scholar
Morrow JM, Lazic S, Chang BS. A novel rhodopsin-like gene expressed in zebrafish retina. Vis Neurosci. 2011;28(4):325–35.
Article
PubMed
Google Scholar
Pointer MA, Carvalho LS, Cowing JA, Bowmaker JK, Hunt DM. The visual pigments of a deep-sea teleost, the pearl eye Scopelarchus analis. J Exp Biol. 2007;210(Pt 16):2829–35.
Article
CAS
PubMed
Google Scholar
Zhang H, Futami K, Yamada Y, Horie N, Okamura A, Utoh T, Mikawa N, Tanaka S, Okamoto N, Oka HP. Isolation of freshwater and deep-sea type opsin genes from the common Japanese conger. J Fish Biol. 2002;61(2):313–24.
Article
CAS
Google Scholar
Archer S, Hope A, Partridge JC. The molecular basis for the green-blue sensitivity shift in the rod visual pigments of the European eel. Proc R Soc Lond B. 1995;262(1365):289–95.
Article
CAS
Google Scholar
Nelson JS: Fishes of the world: Wiley; 2006.
Google Scholar
Tsukamoto K, Chow S, Otake T, Kurogi H, Mochioka N, Miller MJ, Aoyama J, Kimura S, Watanabe S, Yoshinaga T, et al. Oceanic spawning ecology of freshwater eels in the western North Pacific. Nat Commun. 2011;2:179.
Article
PubMed
PubMed Central
Google Scholar
Chow S, Kurogi H, Mochioka N, Kaji S, Okazaki M, Tsukamoto K. Discovery of mature freshwater eels in the open ocean. Fish Sci. 2009;75(1):257–9.
Article
CAS
Google Scholar
Righton D, Westerberg H, Feunteun E, Okland F, Gargan P, Amilhat E, Metcalfe J, Lobon-Cervia J, Sjoberg N, Simon J, et al. Empirical observations of the spawning migration of European eels: the long and dangerous road to the Sargasso Sea. Sci Adv. 2016;2(10):e1501694.
Article
PubMed
PubMed Central
Google Scholar
Broughton RE, Betancur RR, Li C, Arratia G, Orti G. Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLoS Curr. 2013;5
Inoue JG, Miya M, Tsukamoto K, Nishida M. A mitogenomic perspective on the basal teleostean phylogeny: resolving higher-level relationships with longer DNA sequences. Mol Phylogenet Evol. 2001;20(2):275–85.
Article
CAS
PubMed
Google Scholar
Zhang H, Futami K, Horie N, Okamura A, Utoh T, Mikawa N, Yamada Y, Tanaka S, Okamoto N. Molecular cloning of fresh water and deep-sea rod opsin genes from Japanese eel Anguilla japonica and expressional analyses during sexual maturation. FEBS Lett. 2000;469(1):39–43.
Article
CAS
PubMed
Google Scholar
Hope AJ, Partridge JC, Hayes PK. Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L). Proc R Soc Lond B. 1998;265(1399):869–74.
Article
CAS
Google Scholar
Wood P, Partridge JC. Opsin substitution induced in retinal rods of the eel (Anguilla anguilla (L.)): a model for G-protein-linked receptors. Proc Royal Soc Lond B. 1993;254(1341):227–32.
Morrow JM, Lazic S, Dixon Fox M, Kuo C, Schott RK, AGE D, Santini F, Tropepe V, Chang BS. a second visual rhodopsin gene, rh1-2, is expressed in zebrafish photoreceptors and found in other ray-finned fishes. J Exp Biol. 2017;220(Pt 2):294–303.
Article
PubMed
Google Scholar
Minamoto T, Shimizu I. Molecular mechanism of visual adaptation in fish. Jpn J Ichthyol. 2005;52(2):91–106.
Li J, Bian C, Hu Y, Mu X, Shen X, Ravi V, Kuznetsova IS, Sun Y, You X, Qiu Y, et al. A chromosome-level genome assembly of the Asian arowana, Scleropages formosus. Sci Data. 2016;3:160105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanaka H. Progression in artificial seedling production of Japanese eel Anguilla japonica. Fish Sci. 2015;81(1):11–9.
Asahida T, Kobayashi T, Saitoh K, Nakayama I. Tissue preservation and total DNA extraction form fish stored at ambient temperature using buffers containing high concentration of urea. Fish Sci. 1996;62(5):727–30.
Article
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics. 2011;27(4):578–9.
Article
CAS
PubMed
Google Scholar
Boetzer M, Pirovano W. Toward almost closed genomes with GapFiller. Genome Biol. 2012;13(6):R56.
Article
PubMed
PubMed Central
Google Scholar
Zhu D, Song W, Yang K, Cao X, Gul Y, Wang W. Flow cytometric determination of genome size for eight commercially important fish species in China. In Vitro Cell Dev Biol Anim. 2012;48(8):507–17.
Article
PubMed
Google Scholar
Marcais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27(6):764–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kai W, Nomura K, Fujiwara A, Nakamura Y, Yasuike M, Ojima N, Masaoka T, Ozaki A, Kazeto Y, Gen K, et al. A ddRAD-based genetic map and its integration with the genome assembly of Japanese eel (Anguilla japonica) provides insights into genome evolution after the teleost-specific genome duplication. BMC Genomics. 2014;15:233.
Article
PubMed
PubMed Central
Google Scholar
Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008;24(5):637–44.
Article
CAS
PubMed
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.
Article
PubMed
PubMed Central
Google Scholar
Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yates A, Akanni W, Amode MR, Barrell D, Billis K, Carvalho-Silva D, Cummins C, Clapham P, Fitzgerald S, Gil L, et al. Ensembl 2016. Nucleic Acids Res. 2016;44(D1):D710–6.
Article
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rondeau EB, Minkley DR, Leong JS, Messmer AM, Jantzen JR, von Schalburg KR, Lemon C, Bird NH, Koop BF. The genome and linkage map of the northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei. PLoS One. 2014;9(7):e102089.
Article
PubMed
PubMed Central
Google Scholar
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, et al. De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–512.
Article
CAS
PubMed
Google Scholar
Li L, Stoeckert CJ Jr, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13(9):2178–89.
Article
CAS
PubMed
PubMed Central
Google Scholar
Slater GS, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31.
Article
PubMed
PubMed Central
Google Scholar
Henkel CV, Burgerhout E, de Wijze DL, Dirks RP, Minegishi Y, Jansen HJ, Spaink HP, Dufour S, Weltzien FA, Tsukamoto K, et al. Primitive duplicate Hox clusters in the European eel's genome. PLoS One. 2012;7(2):e32231.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. Versatile and open software for comparing large genomes. Genome Biol. 2004;5(2):R12.
Article
PubMed
PubMed Central
Google Scholar
Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol. 2009;537:39–64.
Article
CAS
PubMed
Google Scholar
Saitoh K, Sado T, Doosey MH, Bart HL Jr, Inoue JG, Nishida M, Mayden RL, Miya M. Evidence from mitochondrial genomics supports the lower Mesozoic of South Asia as the time and place of basal divergence of cypriniform fishes (Actinopterygii: Ostariophysi). Zool J Linnean Soc. 2011;161(3):633–62.
Article
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.
Article
CAS
PubMed
Google Scholar
Cao Y, Kim KS, Ha JH, Hasegawa M. Model dependence of the phylogenetic inference: relationship among carnivores, Perissodactyls and Cetartiodactyls as inferred from mitochondrial genome sequences. Genes Genet Syst. 1999;74(5):211–7.
Hasegawa M, Kishino H. Accuracies of the simple methods for estimating the bootstrap probability of a maximum-likelihood tree. Mol Biol Evol. 1994;11(1):142–5.
CAS
Google Scholar
Shimodaira H, Hasegawa M. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics. 2001;17(12):1246–7.
Article
CAS
PubMed
Google Scholar
Steinway SN, Dannenfelser R, Laucius CD, Hayes JE, Nayak S. JCoDA: a tool for detecting evolutionary selection. BMC Bioinformatics. 2010;11:284.
Article
PubMed
PubMed Central
Google Scholar
Yokoyama S, Tada T, Zhang H, Britt L. Elucidation of phenotypic adaptations: molecular analyses of dim-light vision proteins in vertebrates. Proc Natl Acad Sci U S A. 2008;105(36):13480–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jansen HJ, Liem M, Jong-Raadsen SA, Dufour S, Weltzien FA, Swinkels W, Koelewijn A, Palstra AP, Pelster B, Spaink HP, et al. Rapid de novo assembly of the European eel genome from nanopore sequencing reads. Sci Rep. 2017;7(1):7213.
Article
PubMed
PubMed Central
Google Scholar
Wiley E, Johnson GD. A teleost classification based on monophyletic groups. Origin and phylogenetic interrelationships of teleosts. 2010;1:123–82.
Google Scholar
Chen JN, Lopez JA, Lavoue S, Miya M, Chen WJ. Phylogeny of the Elopomorpha (Teleostei): evidence from six nuclear and mitochondrial markers. Mol Phylogenet Evol. 2014;70:152–61.
Article
PubMed
Google Scholar
Nakamura Y. A mathematical model for gene evolution after whole genome duplication. In: ArXiv e-prints vol. 1702;2017
Inoue JG, Sato Y, Sinclair R, Tsukamoto K, Nishida M. Rapid genome reshaping by multiple-gene loss after whole-genome duplication in teleost fish suggested by mathematical modeling. Proc Natl Acad Sci U S A. 2015;112(48):14918–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000;290(5494):1151–5.
Article
CAS
PubMed
Google Scholar
Lafont AG, Rousseau K, Tomkiewicz J, Dufour S. Three nuclear and two membrane estrogen receptors in basal teleosts, Anguilla sp.: identification, evolutionary history and differential expression regulation. Gen Comp Endocrinol. 2016;235:177–91.
Article
CAS
PubMed
Google Scholar
Robertson FM, Gundappa MK, Grammes F, Hvidsten TR, Redmond AK, Lien S, Martin SAM, Holland PWH, Sandve SR, Macqueen DJ. Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biol. 2017;18(1):111.
Article
PubMed
PubMed Central
Google Scholar
Christensen KA, Davidson WS. Autopolyploidy genome duplication preserves other ancient genome duplications in Atlantic salmon (Salmo Salar). PLoS One. 2017;12(2):e0173053.
Article
PubMed
PubMed Central
Google Scholar
Saitoh K. Mitotic and meiotic analyses of the 'large race' of Cobitis Striata, a polyploid spined loach of hybrid origin. Folia Biol (Krakow). 2003;51(Suppl):101–5.
Google Scholar
Morini M, Penaranda DS, Vilchez MC, Tveiten H, Lafont AG, Dufour S, Perez L, Asturiano JF. The expression of nuclear and membrane estrogen receptors in the European eel throughout spermatogenesis. Comp Biochem Physiol A Mol Integr Physiol. 2017;203:91–9.
Article
CAS
PubMed
Google Scholar
Ogino Y, Kuraku S, Ishibashi H, Miyakawa H, Sumiya E, Miyagawa S, Matsubara H, Yamada G, Baker ME, Iguchi T. Neofunctionalization of androgen receptor by gain-of-function mutations in teleost fish lineage. Mol Biol Evol. 2016;33(1):228–44.
Article
CAS
PubMed
Google Scholar
Douard V, Brunet F, Boussau B, Ahrens-Fath I, Vlaeminck-Guillem V, Haendler B, Laudet V, Guiguen Y. The fate of the duplicated androgen receptor in fishes: a late neofunctionalization event? BMC Evol Biol. 2008;8:336.
Article
PubMed
PubMed Central
Google Scholar
Guo B, Gan X, He S. Hox genes of the Japanese eel Anguilla japonica and Hox cluster evolution in teleosts. J Exp Zool B Mol Dev Evol. 2010;314(2):135–47.
PubMed
Google Scholar
Dornburg A, Friedman M, Near TJ. phylogenetic analysis of molecular and morphological data highlights uncertainty in the relationships of fossil and living species of Elopomorpha (Actinopterygii: Teleostei). Mol Phylogenet Evol. 2015;89:205–18.
Article
CAS
PubMed
Google Scholar
Santini F, Kong X, Sorenson L, Carnevale G, Mehta RS, Alfaro ME. A multi-locus molecular timescale for the origin and diversification of eels (order: Anguilliformes). Mol Phylogenet Evol. 2013;69(3):884–94.
Article
CAS
PubMed
Google Scholar
Watanabe HC, Mori Y, Tada T, Yokoyama S, Yamato T. Molecular mechanism of long-range synergetic color tuning between multiple amino acid residues in conger rhodopsin. Biophysics (Oxf). 2010;6:67–8.
Article
CAS
Google Scholar
Inoue JG, Miya M, Miller MJ, Sado T, Hanel R, Hatooka K, Aoyama J, Minegishi Y, Nishida M, Tsukamoto K. Deep-ocean origin of the freshwater eels. Biol Lett. 2010;6(3):363–6.
Article
PubMed
PubMed Central
Google Scholar